It is one of our problems that as we become crowded together, the sounds we make to each other, in our increasingly complex communication systems, become more random-sounding, accidental or incidental, and we have trouble selecting meaningful signals out of the noise. One reason is, of course, that we do not seem able to restrict our communication to information-bearing, relevant signals. Given any new technology for transmitting information, we seem bound to use it for great quantities of small talk. We are only saved by music from being overwhelmed by nonsense.
It is a marginal comfort to know that the relatively new science of bioacoustics must deal with similar problems in the sounds made by other animals to each other. No matter what sound-making device is placed at their disposal, creatures in general do a great deal of gabbling, and it requires long patience and observation to edit out the parts lacking syntax and sense. Light social conversation, designed to keep the party going, prevails. Nature abhors a long silence.
Somewhere, underlying all the other signals, is a continual music. Termites make percussive sounds to each other by beating their heads against the floor in the dark, resonating corridors of their nests. The sound has been described as resembling, to the human ear, sand falling on paper, but spectregraphic analysis of sound records has recently revealed a high degree of organization in the drumming; the beats occur in regular, rhythmic phrases, differing in duration, like notes for a tympani section.
From time to time, certain termites make a convulsive movement of their mandibles to produce a loud, high-pitched clicking sound, audible ten meters off. So much effort goes into this one note that it must have urgent meaning, at least to the sender. He cannot make it without such a wrench that he is flung one or two centimeters into the air by the recoil.
Thomas, L., 1978. The lives of a cell: notes of a biology watcher, New York, NY: Penguin Books.