
Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter One:
The Computer Revolution Hasn't
Happened Yet
South of San Francisco and north of Silicon Valley, near the place where
the pines on the horizon give way to the live oaks and radiotelescopes,
an unlikely subculture has been creating a new medium for human
thought. When mass-production models of present prototypes reach our
homes, offices, and schools, our lives are going to change dramatically.

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://www.rheingold.com/texts/tft/14.htm

The first of these mind-amplifying machines will be descendants of the
devices now known as personal computers, but they will resemble
today's information processing technology no more than a television
resembles a fifteenth-century printing press. They aren't available yet,
but they will be here soon. Before today's first-graders graduate from
high school, hundreds of millions of people around the world will join
together to create new kinds of human communities, making use of a
tool that a small number of thinkers and tinkerers dreamed into being
over the past century.

Nobody knows whether this will turn out to be the best or the worst
thing the human race has done for itself, because the outcome of this
empowerment will depend in large part on how we react to it and what
we choose to do with it. The human mind is not going to be replaced
by a machine, at least not in the foreseeable future, but there is little
doubt that the worldwide availability of fantasy amplifiers,
intellectual toolkits, and interactive electronic communities will
change the way people think, learn, and communicate.

It looks as if this latest technology-triggered transformation of society
could have even more intense impact than the last time human thought
was augmented, five hundred years ago, when the Western world
learned to read. Less than a century after the invention of movable
type, the literate community in Europe had grown from a privileged
minority to a substantial portion of the population. People's lives
changed radically and rapidly, not because of printing machinery, but
because of what that invention made it possible for people to know.
Books were just the vehicles by which the ideas escaped from the
private libraries of the elite and circulated among the population.

The true value of books emerged from the community they made
possible, an intellectual community that is still alive all over the world.
The printed page has been a medium for the propagation of ideas
about chemistry and poetry, evolution and revolution, democracy and
psychology, technology and industry, and many other notions beyond
the ken of the people who invented movable type and started cranking
out Bibles.

Because mass production of sophisticated electronic devices can lag ten
years or more behind the state of the art in research prototypes, the
first effects of the astonishing achievements in computer science since
1960 have only begun to enter our lives. Word processors, video
games, educational software, and computer graphics were unknown
terms to most people only ten years ago, but today they are the
names for billion-dollar industries. And the experts agree that the most
startling developments are yet to come.

A few of the pioneers of personal computing who still work in the
computer industry can remember the birth and the dream, when the
notion of personal computing was an obscure heresy in the ranks of the
computing priesthood. Thirty years ago, the overwhelming majority of
the people who designed, manufactured, programmed, and used
computers subscribed to a single idea about the proper (and possible)
place of computers in society: "computers are mysterious devices

http://www.rheingold.com/vc/book

meant to be used in mathematical calculations." Period. Computer
technology was believed to be too fragile, valuable, and complicated for
nonspecialists.

In 1950 you could count the people who took exception to this dogma
on the fingers of one hand. The dissenting point of view shared by
those few people involved in a different way of thinking about how
computers might be used. The dissenters shared a vision of personal
computing in which computers would be used to enhance the most
creative aspects of human intelligence--for everybody, not just the
technocognoscenti.

Those who questioned the dogma of data processing agreed that
computers can help us calculate, but they also suspected that if the
devices could be made more interactive, these tools might help us to
speculate, build and study models, choose between alternatives, and
search for meaningful patterns in collections of information. They
wondered whether this newborn device might become a communication
medium as well as a calculating machine.

These heretical computer theorists proposed that if human knowledge
is indeed power, then a device that can help us transform information
into knowledge should be the basis for a very powerful technology.
While most scientists and engineers remained in awe of the giant
adding machines, this minority insisted on thinking about how
computers might be used to assist the operation of human minds in
nonmathematical ways.

Tools for Thought focuses on the ideas of a few of the people who have
been instrumental in creating yesterday's, today's, and tomorrow's
human-computer technology. Several key figures in the history of
computation lived and died centuries or decades ago. I call these
people, renowned in scientific circles but less known to the public, the
patriarchs. Other co-creators of personal computer technology are still
at work today, continuing to explore the frontiers of mind-machine
interaction. I call them the pioneers.

The youngest generation, the ones who are exploring the cognitive
domains we will all soon experience, I call the Infonauts. It is too
early to tell what history will think of the newer ideas, but we're going
to take a look at some of the things the latest inner-space explorers
are thinking, in hopes of catching some clues to what (and how)
everybody will be thinking in the near future.

As we shall see, the future limits of this technology are not in the
hardware but in our minds. The digital computer is based upon a
theoretical discovery known as "the universal machine," which is not
actually a tangible device but a mathematical description of a machine
capable of simulating the actions of any other machine. Once you have
created a general-purpose machine that can imitate any other
machine, the future development of the tool depends only on what
tasks you can think to do with it. For the immediate future, the issue of
whether machines can become intelligent is less important than
learning to deal with a device that can become whatever we clearly

imagine it to be.

The pivotal difference between today's personal computers and
tomorrow's intelligent devices will have less to do with their hardware
than their software-- the instructions people create to control the
operations of the computing machinery. A program is what tells the
general-purpose machine to imitate a specific kind of machine. Just as
the hardware basis for computing has evolved from relays to vacuum
tubes to transistors to integrated circuits, the programs have evolved
as well. When information processing grows into knowledge
processing, the true personal computer will reach beyond
hardware and connect with a vaster source of power than that
of electronic microcircuitry--the power of human minds working
in concert.

The nature of the world we create in the closing years of the twentieth
century will be determined to a significant degree by our attitudes
toward this new category of tool. Many of us who were educated in the
pre-computer era shall be learning new skills. The college class of 1999
is already on its way. It is important that we realize today that those
skills of tomorrow will have little to do with how to operate computers
and a great deal to do with how to use augmented intellects, enhanced
communications, and amplified imaginations.

Forget about "computer literacy" or obfuscating technical jargon, for
these aberrations will disappear when the machines and their programs
grow more intelligent. The reason for building a personal computer in
the first place was to enable people to do what people do best by using
machines to do what machines do best. Many people are afraid of
today's computers because they have been told that these machines
are smarter than they are--a deception that is reinforced by the rituals
that novices have been forced to undergo in order to use computers. In
fact, the burden of communication should be on the machine. A
computer that is difficult to use is a computer that's too dumb
to understand what you want.

If the predictions of some of the people in this book continue to be
accurate, our whole environment will suddenly take on a kind of
intelligence of its own sometime between now and the turn of the
century. Fifteen years from now, there will be a microchip in your
telephone receiver with more computing power than all the technology
the Defense Department can buy today. All the written knowledge in
the world will be one of the items to be found in every schoolchild's
pocket.

The computer of the twenty-first century will be everywhere, for
better or for worse, and a more appropriate prophet than Orwell for
this eventuality might well be Marshall McLuhan. If McLuhan was right
about the medium being the message, what will it mean when the
entire environment becomes the medium? If such development does
occur as predicted, it will probably turn out differently from even the
wildest "computerized household" scenarios of the recent past.

The possibility of accurately predicting the social impact of any new
technology is questionable, to say the least. At the beginning of the
twentieth century, it was impossible for average people or even the
most knowledgeable scientists to envision what life would be like for
their grandchildren, who we now know would sit down in front of little
boxes and watch events happening at that moment on the other side of
the world.

Today, only a few people are thinking seriously about what to do with a
living room wall that can tell you anything you want to know, simulate
anything you want to see, connect you with any person or group of
people you want to communicate with, and even help you find out
what it is when you aren't entirely sure. In the 1990s it might be
possible for people to "think as no human being has ever thought" and
for computers to "process data in a way not approached by the
information-handling machines we know today," as J.C.R. Licklider, one
of the most influential pioneers, predicted in 1960, a quarter of a
century before the hardware would begin to catch up with his ideas.

The earliest predictions about the impact of computing machinery
occurred quite a bit earlier than 1960. The first electronic computers
were invented by a few individuals, who often worked alone, during
World War II. Before the actual inventors of the 1940s were the
software patriarchs of the 1840s. And before them, thousands of years
ago, the efforts of thinkers from many different cultures to find better
ways to use symbols as tools led to the invention of mathematics and
logic. It was these formal systems for manipulating symbols that
eventually led to computation. Links in what we can now see as a
continuous chain of thought were created by a series of Greek
philosophers, British logicians, Hungarian mathematicians, and
American inventors.

Most of the patriarchs had little in common with each other, socially or
intellectually, but in some ways they were very much alike. It isn't
surprising that they were exceptionally intelligent, but what is unusual
is that they all seem to have been preoccupied with the power of their
own minds. For sheer intellectual adventure, many intelligent people
pursue the secrets of the stars, the mysteries of life, the myriad ways
to use knowledge to accomplish practical goals. But what the
software ancestors sought to create were tools to amplify the
power of their own brains--machines to take over what they
saw as the more mechanical aspects of thought.

Perhaps as an occupational hazard of this dangerously self-reflective
enterprise, or as a result of being extraordinary people in restrictive
social environments, the personalities of these patriarchs (and
matriarchs) of computation reveal a common streak of eccentricity,
ranging from the mildly unorthodox to the downright strange.

Charles Babbage and Ada, Countess of Lovelace, lived in the
London of Dickens and Prince Albert (and knew them both). A
hundred years before some of the best minds in the world used
the resources of a nation to build a digital computer, these two
eccentric inventor-mathematicians dreamed of building their

"Analytical Engine." He constructed a partial prototype and she
used it, with notorious lack of success, in a scheme to win a
fortune at the horse races. Despite their apparent failures,
Babbage was the first true computer designer, and Ada was
history's first programmer.

George Boole invented a mathematical tool for future computer-
builders--an "algebra of logic" that was used nearly a hundred
years later to link the process of human reason to the operations
of machines. The idea came to him in a flash of inspiration when
he was walking across a meadow one day, at the age of
seventeen, but it took him twenty years to teach himself enough
mathematics to write The Laws of Thought.

Although Boole's lifework was to translate his inspiration into an
algebraic system, he continued to be so impressed with the
suddenness and force of the revelation that hit him that day in the
meadow that he also wrote extensively about the powers of the
unconscious mind. After his death Boole's widow turned these
ideas into a kind of human potential cult, a hundred years before
the "me decade."

Alan Turing solved one of the most crucial mathematical
problems of the modern era at the age of twenty-four, creating
the theoretical basis for computation in the process. Then he
became the top code-breaker in the world--when he wasn't
bicycling around wearing a gas mask or running twenty miles with
an alarm clock tied around his waist. If it hadn't been for the
success of Turing's top-secret wartime mission, the Allies might
have lost World War II. After the war, he created the field of
artificial intelligence and laid down the foundations of the art and
science of programming.

He was notoriously disheveled, socially withdrawn, sometimes loud
and abrasive, and even his friends thought that he carried
nonconformity to weird extremes. At the age of forty-two, he
committed suicide, hounded cruelly by the same government he
helped save.

John von Neumann spoke five languages and knew dirty
limericks in all of them. His colleagues, famous thinkers in their
own right, all agreed that the operations of Johnny's mind were
too deep and far too fast to be entirely human. He was one of
history's most brilliant physicists, logicians, and mathematicians,
as well as the software genius who invented the first electronic
digital computer.

John von Neumann was the center of the group who created the
"stored program" concept that made truly powerful computers
possible, and he specified a template that is still used to design
almost all computers--the "von Neumann architecture." When he
died, the Secretaries of Defense, the Army, Air Force, and Navy
and the Joint Chiefs of staff were all gathered around his bed,
attentive to his last gasps of technical and policy advice.

Norbert Wiener, raised to be a prodigy, graduated from Tufts at
fourteen, earned his Ph.D. from Harvard at eighteen, and studied
with Bertrand Russell at nineteen. Wiener had a different kind of
personality than his contemporary and colleague, von Neumann.
Although involved in the early years of computers, he eventually
refused to take part in research that could lead to the construction
of weapons. Scarcely less brilliant than von Neumann, Wiener was
vain, sometimes paranoid, and not known to be the life of the
party, but he made important connections between computers,
living organisms, and the fundamental laws of the physical
universe. He guarded his ideas and feuded with other scientists,
writing unpublished novels about mathematicians who did him
wrong.

Wiener's conception of cybernetics was partially derived from
"pure" scientific work in mathematics, biology, and
neurophysiology, and partially derived from the grimly applied
science of designing automatic antiaircraft guns. Cybernetics was
about the nature of control and communication systems in
animals, humans, and machines.

Claude Shannon, another lone-wolf genius, is still known to his
neighbors in Cambridge, Massachusetts, for his skill at riding a
motorcycle. In 1937, as a twenty-one-year-old graduate student,
he showed that Boole's logical algebra was the perfect tool for
analyzing the complex networks of switching circuits used in
telephone systems and, later, in computers. During the war and
afterward, Shannon established the mathematical foundation of
information theory. Together with cybernetics, this collection of
theorems about information and communication created a new
way to understand people and machines--and established
information as a cosmic fundamental, along with energy and
matter.

The software patriarchs came from wildly different backgrounds. Then
as now, computer geniuses were often regarded as "odd" by those
around them, and their reasons for wanting to invent computing
devices seem to have been as varied as their personalities. Something
about the notion of a universal machine enticed mathematicians
and philosophers, logicians and code-breakers, whiz kids and
bomb-builders. Even today, the worlds of computer research
and the software business bring together an unlikely mixture of
entrepreneurs and evangelists, futurians and utopians, cultists,
obsessives, geniuses, pranksters, and fast-buck artists.

Despite their outward diversity, the computer patriarchs of a hundred
years ago and the cyberneticians if the World War II era appear to
have shared at least one characteristic with each other and with
software pioneers and infonauts of more recent vintage. In recent
years, the public has become more aware of a subculture that sprouted
in Cambridge and Palo Alto and quietly spread through a national
network of fluorescent-lit campus computer centers for the past two
decades--the mostly young, mostly male, often brilliant, sometimes

bizarre "hackers," or self-confessed compulsive programmers.
Sociologists and psychologists of the 1980s are only beginning to
speculate about the deeper motivation for this obsession, but any
later-day hacker will admit that the most fascinating thing in his
own life is his own mind, and tell you that he regards intense,
prolonged interaction with a computer program as a particularly
satisfying kind of dialogue with his own thoughts.

A little touch of the hacker mentality seems to have affected all of the
major players in this story. From what we know today about the
patriarchs and pioneers, they all appear to have pursued a vision of a
new way to use their minds. Each of them was trying to create a
mental lever. Each of them contributed indispensable components of
the device that was eventually assembled. But none of them
encompassed it all.

The history of computation became increasingly complex as it
progressed from the patriarchs to the pioneers. At the beginning, many
of the earliest computer scientists didn't know that their ideas would
end up in a kind of machine. Almost all of them worked in isolation.
Because of their isolation from one another, the common intellectual
ancestors of the modern computer are relatively easy to discern in
retrospect. But since the 1950s, with the proliferation of researchers
and teams of researchers in academic, industrial, and military
institutions, the branches of the history have become tangled and too
numerous to describe exhaustively. Since the 1950s, it has become
increasingly difficult to assign credit for computer breakthroughs
to individual inventors.

Although individual contributors to the past two or three decades of
computer research development have been abundant, the people who
have been able to see some kind of overall direction to the fast,
fragmented progress of recent years have been sparse. Just as the
earliest logicians and mathematicians didn't know their thoughts would
end up as a part of a machine, the vast majority of the engineers and
programmers of the 1960s were unaware that their machines had
anything to do with human thought. The latter day computer pioneers
in the middle chapters of this book were among the few who played
central roles in the development of personal computing. Like their
predecessors, these people tried to create a kind of mental lever.
Unlike most of their predecessors, they were also trying to design a
tool that the entire population might use.

Where the original software patriarchs solved various problems in the
creation of the first computers, the personal computer pioneers
struggled with equally vexing problems involved in using computers to
create leverage for human intellect, the way wheels and dynamos
create leverage for human muscles. Where the patriarchs were out to
create computation, the pioneers sought to transform it:

J.C.R. Licklider, an experimental psychologist at MIT who became
the director of the Information Processing Techniques Office of the
U.S. Defense Department's Advanced Research Projects Agency

(ARPA), was the one man whose vision enabled hundreds of other
like-minded computer designers to pursue a whole new direction
in hardware and software development. In the early 1960s, the
researchers funded by Licklider's programs reconstructed computer
science on a new and higher level, through an approach known as
time-sharing.

Although their sponsorship was military, the people Licklider hired
or supported were working toward a transformation that he and
they believed to be social as well as technological. Licklider saw
the new breed of interactive computers his project directors were
creating as the first step toward an entirely new kind of human
communication capability.

Doug Engelbart started thinking about building a thought-
amplifying device back when Harry Truman was President, and he
has spent the last thirty years stubbornly pursuing his original
vision of building a system for augmenting human intellect. At one
point in the late 1960s, Engelbart and his crew of infonauts
demonstrated to the assembled cream of computer scientists and
engineers how the devices most people then used for performing
calculations or keeping track of statistics could be used to enhance
the most creative human activities.

His former students have gone on to form a disproportionate part
of the upper echelons of today's personal computer designers.
Partially because of the myopia of his contemporaries, and
partially because of his almost obsessive insistence on maintaining
the purity of his original vision, most of Engelbart's innovations
have yet to be adapted by the computer orthodoxy.

Robert Taylor, at the age of thirty-three, became the director of
the ARPA office created by Licklider, thus launching his career in a
new and much-needed field--the shaping of large-scale, long
term, human-computer research campaigns. He became a "people
collector," looking for those computer researchers whose ideas
might have been ignored by the orthodoxy, but whose projects
promised to boost the state of computer systems by orders of
magnitude.

Alan Kay was one of television's original quiz kids. He learned to
read at the age of two and a half, barely managed to avoid being
thrown out of school and the Air Force, and ended up as a
graduate student at one of the most important centers of ARPA
research. In the 1970s, Kay was one of the guiding software
spirits of PARC's Alto project (the first true personal computer)
and the chief architect of Smalltalk, a new kind of computer
language. He started the 1980s as a director of Atari Corporation's
long-term research effort, and in 1984 he left Atari to become a
"research fellow" for Apple Corporation.

Along with his hard-won credentials as one of the rare original
thinkers who is able to implement his thoughts via the craft of
software design, Kay also has a reputation as a lifelong
insubordinate. Since the first time he was thrown out of a

classroom for knowing more than the teacher, Kay's avowed
goal has been to build a "fantasy amplifier" that anyone
with an imagination could use to explore the world of
knowledge on their own, a "dynamic medium for creative
thought" that could be as useful and thought-provocative to
children in kindergarten as it would be to scientists in a
research laboratory.

Licklider, Engelbart, Taylor, and Kay are still at work, confident that
many more of us will experience the same thrill that has kept them
going all these years--what Licklider, still at MIT, calls the "religious
conversion" to interactive computing. Engelbart works for Tymshare
Corporation, marketing his "Augment" system to information workers.
Taylor is setting up another computer systems research center, this
time under the auspices of the Digital Equipment Corporation, and is
collecting people once again, this time for a research effort that will
bring computing into the twenty-first century. Kay, at Atari, continued
to steer toward the fantasy amplifier, despite the fact that their mother
company was often described in the news media as "seriously
troubled." It is fair to assume that he will continue to work toward the
same goal in his new association with Steve Jobs, chairman of Apple
and a computer visionary of a more entrepreneurial bent.

The pioneers, although they are still at work, are not the final
characters in the story of the computer quest. The next generations of
innovators are already at work, and some of them are surprisingly
young. Computer trailblazers in the past tended to make their marks
early in life--a trend that seems to be continuing in the present. Kay,
the former quiz kid, is now in his early forties. Taylor is in his early
fifties, Engelbart in his late fifties, and Licklider in his sixties. Today,
younger men and, increasingly, younger women, have begun to take
over the field professionally, while even younger generations are now
living in their own versions of the future for fun, profit, and thrills.

The ones I call the "infonauts" are the older brothers and sisters of the
adolescent hackers you read about in the papers. Most of them are in
their twenties and thirties. They work for themselves or for some
research institution or software house, and represent the first members
of the McLuhan generation to use the technology invented by the von
Neumann generation as tools to extend their imagination. From the
science of designing what they call the "user interface"--where mind
meets machine--to the art of building educational microworlds, the
infonauts have been using their new medium to create the mass-media
version we will use fifteen years from now.

Avron Barr is a knowledge engineer who helps build the special
computer programs known as expert systems that are apparently
able to acquire knowledge from human experts and transfer it to
other humans. These systems are now used experimentally to help
physicians diagnose diseases, as well as commercially to help
geologists locate mineral deposits and to aid chemists in
identifying new compounds.

Although philosophers debate whether such programs truly

"understand" what they are doing, and psychologists point out the
huge gap between the narrowly defined kind of expertise involved
in geology or diagnosis and the much more general "world
knowledge" that all humans have, there is no denying that expert
systems are valuable commodities. Avron Barr believes that they
will evolve into more than expensive encyclopedias for specialists.
In his mid-thirties and just starting his career in an infant
technology, he dreams of creating an expert assistant in the art of
helping people agree with one another.

Brenda Laurel, also in her mid-thirties, is an artist whose
medium exists at the boundary of Kay's and Barr's and Engelbart's
specialties. Her goal is to design new methods of play, learning,
and artistic expression into computer-based technologies. Like
Barr, she believes that the applications of her research point
toward more extensive social effects than just another success in
the software market.

Brenda wants to use an expert system that knows what
playwrights, composers, librarians, animators, artists, and
dramatic critics know, to create a world of sights and sounds in
which people can learn about flying a spaceship or surviving in the
desert or being a blue whale by experiencing space-desert-whale
simulated microworlds in person.

Ted Nelson is a dropout, gadfly, and self-proclaimed genius who
self-published Computer Lib, the best-selling underground
manifesto of the microcomputer revolution. His dream of a new
kind of publishing medium and continuously updated world-library
threatens to become the world's longest software project. He's
wild and woolly, imaginative and hyperactive, has problems
holding jobs and getting along with colleagues, and was the secret
inspiration to all those sub-teenage kids who lashed together
homebrew computers or homemade programs a few years back
and are now the ruling moguls of the microcomputer industry.

Time will tell whether he is a prophet too far ahead of his time, or
just a persistent crackpot, but there is no doubt that he has
contributed a rare touch of humor to the often too-serious world
of computing. How can you not love somebody who says "they
should have called it an oogabooga box instead of a computer"?

Despite their differences in background and personality, the computer
patriarchs, software pioneers, and the newest breed of infonauts seem
to share a distant focus on a future that they are certain the rest of us
will see as clearly as they do--as soon as they turn what they see in
their mind's eye into something we can hold in our hands. What did
they see? What will happen when their visions materialize in our
homes? And what do contemporary visionaries see in store for us next?

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Two:
The First Programmer
Was a Lady

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/texts/tft/1.html0
http://www.rheingold.com/texts/tft/13.

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Two:
The First Programmer Was a Lady
Over a hundred years before a monstrous array of vacuum tubes surged
into history in an overheated room in Pennsylvania, a properly attired
Victorian Gentleman demonstrated an elegant little mechanism of wood
and brass in a London drawing room. One of the ladies attending this
demonstration brought along the daughter of a friend. She was a
teenager with long dark hair, a talent for mathematics, and a weakness
for wagering on horse races. When she took a close look at the device
and realized what this older gentleman was trying to do, she surprised

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

them all by joining him in an enterprise that might have altered history,
had they succeeded.

Charles Babbage and his accomplice, Lady Lovelace, came very close to
inventing the computer more than a century before American engineers
produced ENIAC. The story of the "Analytical Engine" is a tale of two
extraordinarily gifted and ill-fated British eccentrics whose
biographies might have been fabrications of Babbage's friend
Charles Dickens, if Dickens had been a science-fiction writer.
Like many contemporary software characters, these computer pioneers
of the Victorian age attracted as much attention with their unorthodox
personal lives as they did with their inventions.

One of Babbage's biographies is entitled Irascible Genius.. He was
indeed a genius, to judge by what he planned to achieve as well as
what he did achieve. His irascibility was notorious. Babbage was
thoroughly British, stubbornly eccentric, tenaciously visionary,
sometimes scatterbrained, and quite wealthy until he sank his fortune
into his dream of building a calculating engine.

Babbage invented the cowcatcher--that metal device on the front of
steam locomotives that sweeps errant cattle out of the way. He also
devised a means of analyzing entire industries, a method for studying
complex systems that became the foundation of the field of operational
research a hundred years later. When he applied his new method of
analysis to a study of the printing trade, his publishers were so
offended that they refused to accept any more of his books.

Undaunted, he applied his new method to the analysis of the postal
system of his day, and proved that the cost of accepting and assigning
a value to every piece of mail according to the distance it had to travel
was far more expensive than the cost of transporting it. The British
Post Office boosted its capabilities instantly and economically by
charging a flat rate, independent of the distance each piece had to
travel--the "penny post" that persists around the world to this day.

Babbage devised the first speedometer for railroads, and he published
the first comprehensive treatise on actuarial theory (thus helping to
create the insurance industry). He invented and solved ciphers and
made skeleton keys for "unpickable locks"--an interest in cryptanalysis
that he shared with later computer builders. He was the first to
propose that the weather of past years could be discovered by
observing cycles of tree rings. And he was passionate about more than
a few crackpot ideas that history has since proved to be nothing more
than crackpot ideas.

His human relationships were as erratic as his intellectual adventures,
to judge from the number of lifelong public feuds Babbage was known
to have engaged in. Along with his running battles with the Royal
Societies, Babbage carried on a long polemic against organ-grinders
and street musicians. Babbage would write letters to editors about
street noise, and half the organ-grinders in London took to serenading
under Babbage's window when they were in their cups. One
biographer, B. V. Bowden, noted that "It was the tragedy of the man

http://www.cbi.umn.edu/
http://www.cs.yale.edu/HTML/YALE/CS/HyPlans/tap/ada-lovelace.html

that, although his imagination and vision were unbounded, his
judgment by no means matched them, and his impatience made him
intolerant of those who failed to sympathize with his projects."

Babbage dabbled in half a dozen sciences and traveled with a
portable laboratory. He was also a supreme nit-picker, sharp-eyed
and cranky, known to write outraged letters to publishers of
mathematical tables, upbraiding them for obscure inaccuracies he had
uncovered in the pursuit of his own calculations. A mistake in
navigational table, after all, was a matter of life and death for a
seafarer. And a mistake in a table of logarithms could seriously impede
the work of a great mind such as his own.

His nit-picking indirectly led Babbage to invent the ancestor of today's
computers. As a mathematician and astronomer of no small repute, he
resented the time he had to spend poring over logarithm tables, culling
all the errors he knew were being perpetuated upon him by "elderly
Cornish Clergymen, who lived on seven figure logarithms, did all their
work by hand, and were only too apt to make mistakes."

Babbage left a cranky memoir entitled Passages from the Life of a
Philosopher--a work described by computer pioneer Herman Goldstine
as "a set of papers ranging from the sublime to the ridiculous, from
profundities to nonsense in plain bad taste. Indeed much of Babbage's
career is of this sort. It is a wonder that he had as many good and
loyal friends when his behavior was so peculiar."

In Passages, Babbage noted this about the original inspiration for his
computing machines:

The earliest idea that I can trace in my own mind of calculating arithmetical
tables by machinery rose in this manner: One evening I was sitting in the
rooms of the Analytical society at Cambridge, my head leaning forward on
the table in a kind of dreamy mood, with a Table of logarithms lying open
before me. Another member, coming into the room, and seeing me half
asleep, called out, "Well, Babbage, what are you dreaming about?" To
which I replied, "I am thinking that all these Tables (pointing to the
logarithms) might be calculated by machinery."

In 1822, Babbage triumphantly demonstrated at the Royal Astronomical
Society a small working model of a machine, consisting of cogs and
wheels and shafts. The device was capable of performing polynomial
equations by calculating successive differences between sets of
numbers. He was awarded the society's first gold medal for the paper
that accompanied the presentation.

In that paper, Babbage described his plans for a much more ambitious
"Difference Engine." In 1823, the British government awarded him the
first of many grants that were to continue sporadically and
controversially for years to come. Babbage hired a master machinist,
set up shop on his estate, and began to learn at first hand how far
ahead of his epoch's technological capabilities his dreams were running.

The Difference Engine commissioned by the British government was
quite a bit larger and more complex than the model demonstrated
before the Royal Astronomical Society. But the toolmaking art of the

time was not yet up to the level of precision demanded by Babbage's
design. Work continued for years, unsuccessfully. The triumphal
demonstration at the beginning of his enterprise looked as if it had
been the high point of Babbage's career, followed by stubborn and
prolonged decline. The British government finally gave up financing the
scheme.

Babbage, never one to shy away from conflict with unbelievers over
one of his cherished ideas, feuded over the Difference Engine with the
government and with his contemporaries, many of whom began to
make sport of mad old Charley Babbage. While he was struggling to
prove them all wrong, he conceived an idea for an even more
ambitious invention. Babbage, already ridiculously deep in one
visionary development project, began to dream up another one. In
1833 he came up with something far more complex than the device he
had failed to build in years of expensive effort.

If one could construct a machine for performing one kind of calculation,
Babbage reasoned, would it be possible to construct a machine capable
of performing any kind of calculation? Instead of building many small
machines to perform different kinds of calculation, would it be possible
to make the parts of one large machine perform different tasks at
different times, by changing the order in which the parts interact?

Babbage had stumbled upon the idea of a universal calculating
machine, an idea that was to have momentous consequences when
Alan Turing--another brilliant, eccentric British mathematician who was
tragically ahead of his time--considered it again in the 1930s. Babbage
called his hypothetical master calculator the "Analytical Engine." The
same internal parts were to be made to perform different calculations,
through the use of different "patterns of action" to reconfigure the
order in which the parts were to move for each calculation. A detailed
plan was made, and redrawn, and redrawn once again.

The central unit was the "mill," a calculating engine capable of adding
numbers to an accuracy of 50 decimal places, with speed and reliability
guaranteed to lay the Cornish clergymen calculators to rest. Up to one
thousand different 50-digit numbers could be stored for later reference
in the memory unit Babbage called the "store." To display the result,
Babbage designed the first automated typesetter.

Numbers could be put into the store from the mill or from the punched-
card input system Babbage adapted from French weaving machines. In
addition, cards could be used to enter numbers into the mill and
specify the calculations to be performed on the numbers as well. By
using the cards properly, the mill could be instructed to temporarily
place the results in the store, then return the stored numbers to the
mill for later procedures. The final component of the Analytical Engine
was a card-reading device that was, in effect, a control and decision-
making unit.

A working model was eventually built by Babbage's son. Babbage
himself never lived to see the Analytical Engine. Toward the end of his
life, a visitor found that Babbage had filled nearly all the rooms of his
large house with abandoned models of his engine. As soon as it looked

as if one means of constructing his device might actually work--
Babbage thought of a new and better way of doing it.

The four subassemblies of the Analytical Engine functioned very much
like analogous units in modern computing machinery. The mill was the
analog of the central processing unit of a digital computer and the
store was the memory device. Twentieth-century programmers would
recognize the printer as a standard output device. It was the input
device and the control unit, however, that made it possible to move
beyond calculation toward true computation.

The input portion of the Analytical Engine was an important
milestone in the history of programming. Babbage borrowed the
idea of punched-card programming from the French inventor Jacquard,
who had triggered a revolution on the textile industry by inventing a
mechanical method of weaving patterns in cloth. The weaving
machines used arrays of metal rods to automatically pull threads into
position. To create patterns, Jacquard's device interposed a stiff card,
with holes punched in it, between the rods and the threads. The card
was designed to block some of the rods from reaching the thread on
each pass; the holes in the card allowed only certain rods to carry
threads into the loom. Each time the shuttle was thrown, a new card
would appear in the path of the rods. Thus, once the directions for
specific woven patterns were translated into patterns of holes punched
into cards, and the cards were arranged in the proper order to present
to the card reading device, the cloth patterns could be preprogrammed
and the entire weaving process could be automated.

These cards struck Babbage as the key to automated calculation. Here
was a tangible means of controlling those frustratingly abstract
"patterns of action": Babbage put the step-by-step instructions for
complicated calculations into a coded series of holes punched into the
sets of cards that would change the way the mill worked at each step.
Arrange the correctly coded cards in the right way, and you've replaced
a platoon of elderly Cornish gentlemen. Change the cards, and you
replace an entire army of them.

During his crusade to build the devices that he saw in his mind's eye
but was somehow never able to materialize in wood and brass,
Babbage met a woman who was to become his companion, colleague,
conspirator, and defender. She saw immediately what Babbage
intended to do with his Analytical Engine, and she helped him construct
the software for it. Her work with Babbage and the essays she wrote
about the possibilities of the engine established Augusta Ada Byron,
Countess of Lovelace, as a patron saint if not a founding parent of the
art and science of programming.

Ada's father was none other than Lord Byron, the most scandalous
character of his day. His separation from Ada's mother was one of the
most widely reported domestic episodes of the era, and Ada never saw
her father after she was one month old. Byron wrote poignant
passages about Ada in some of his poetry, and she asked to be buried
next to him--probably to spite her mother, who outlived her. Ada's
mother, portrayed by biographers as a vain and overbearing Victorian
figure, thought a daily dose of a laudanum-laced "tonic" would be the

http://library.utoronto.ca/www/utel/rp/authors/byron.html

perfect cure for her beautiful, outspoken daughter's nonconforming
behavior, and thus forced an addiction on her!

Ada exhibited her mathematical talents early in life. One of her family's
closest friends was Augustus De Morgan, the famous British Logician.
She was well tutored, but always seemed to thirst for more knowledge
than her tutors could provide. Ada actively sought the perfect mentor,
whom she thought she found in a contemporary of her mother's--
Charles Babbage.

Mrs. De Morgan was present at the historic occasion when the young
Ada Byron was first shown a working model of the Difference Engine,
during a demonstration Babbage held for Lady Byron's friends. In her
memoirs, Mrs. De Morgan remembered the effect the contraption had
on Augusta Ada: "While the rest of the party gazed at this beautiful
invention with the same sort of expression and feeling that some
savages are said to have shown on first seeing a looking glass or
hearing a gun, Miss Byron, young as she was, understood its working
and saw the great beauty of the invention."

Such parlor demonstrations of mechanical devices were in vogue
among the British upper classes during the Industrial Revolution. While
her elders tittered and gossiped and failed to understand the difference
between this calculator and the various water pumps they had
observed at other demonstrations, young Ada began to knowledgeably
poke and probe various parts of the mechanism, thus becoming the
first computer whiz kid.

Ada was one of the few to recognize that the Difference Engine was
altogether a different sort of device than the mechanical calculators of
the past. Whereas previous devices were analog (performing
calculation by means of measurement), Babbage's was digital
(performing calculation by means of counting). More importantly,
Babbage's design combined arithmetic and logical functions. (Babbage
eventually discovered the new work on the "algebra of Logic" by De
Morgan's friend George Boole--but, by then, it was too late for Ada.)

Ada, who had been tutored by De Morgan, the foremost logician of his
time, had ideas of her own about the possibilities of what one might do
with such devices. Of Ada's gift for this new type of partially
mathematical, partially logical exercise, Babbage himself noted: "She
seems to understand it better than I do, and is far, far better at
explaining it."

At the age of nineteen, Ada married Lord King, Baron of Lovelace. Her
husband was also something of a mathematician, although his talents
were far inferior to those of his wife. The young countess Lovelace
continued her mathematical and computational partnership with
Babbage, resolutely supporting what she knew to be a solid idea, at a
time when less-foresighted members of the British establishment
dismissed Babbage as a crank.

Babbage toured the Continent in 1840, lecturing on the subject of the
device he never succeeded in building. In Italy, a certain Count
Menabrea in Italy took extensive notes at one of the lectures and

http://www.shu.edu/projects/reals/history/demorgan.html

published them in Paris. Ada translated the notes from French to
English and composed an addendum which was more than twice as
long as the text she had translated. When Babbage read the material,
he urged Ada to publish her notes in their entirety.

Lady Lovelace's published notes are still understandable today and are
particularly meaningful to programmers, who can see how truly far
ahead of their contemporaries were the Analytical Engineers. Professor
B. H. Newman in the Mathematical Gazette has written that her
observations "show her to have fully understood the principles
of a programmed computer a century before its time."

Ada was especially intrigued by the mathematical implications of the
punched pasteboard cards that were to be used to feed data and
equations to Babbage's devices. Ada's Essay, entitled "Observations on
Mr. Babbage's Analytical Engine," includes more than one prophetic
passage, unheeded by most of her contemporaries, but which have
grown in significance with the passage of a century:

The distinctive characteristic of the Analytical Engine, and that which has
rendered it possible to endow mechanism with such extensive faculties as
bid fair to make this engine the extensive right hand of algebra, is the
introduction into it of the principle which Jacquard devised for regulating,
by means of punched cards, the most complicated patters in the fabrication
of brocaded stuffs. It is in this that the distinction between the two engines
lies. Nothing of the sort exists in the Difference Engine. We may say most
aptly that the Analytical Engine weaves algebraical patterns just as the
Jacquard loom weaves flowers and leaves. . . .

The bounds of arithmetic were, however, outstepped the moment the idea
of applying cards had occurred; and the Analytical Engine does not occupy
common ground with mere "calculating machines." It holds a position
wholly its own; and the considerations it suggests are most interesting in
their nature. In enabling mechanism to combine together general symbols,
in successions of unlimited variety and extent, a uniting link is established
between the operations of matter and the abstract mental processes of the
most abstract branch of mathematical science. A new, a vast and a
powerful language is developed for the future use of analysis, in which to
wield its truths so that these may become of more speedy and accurate
practical application for the purposes of mankind than the means hitherto
in our possession have rendered possible. Thus not only the mental and
the material, but the theoretical and the practical in the mathematical
world, are brought into intimate connexion with each other. We are not
aware of its being on record that anything partaking of the nature of what
is so well designated the Analytical Engine has been hitherto proposed, or
even thought of, as a practical possibility, any more than the idea of a
thinking or a reasoning machine.

As a Mathematician, Ada was excited about the possibility of
automating laborious calculations. But she was far more interested in
the principles underlying the programming of these devices. Had she
not died so young, it is possible that Ada could have advanced the
nineteenth-century state of the art to the threshold of true
computation.

Even thought the Engine was yet to be built, Ada experimented with
writing sequences of instructions. She noted the value of several
particular tricks in this new art, tricks that are still essential to modern
computer languages--subroutines, loops and jumps. If your object is to

weave a complex calculation out of subcalculations, some of which may
be repeated many times, it is tedious to rewrite a sequence of a dozen
or a hundred instructions over and over, Why not just store copies of
often-used calculations, or subroutines, in a "library" of procedures for
later use? Then your program can "call" for the subroutine from the
library automatically, when your calculation requires it. Such libraries of
subprocedures are now a part of virtually every high-level programming
language.

Analytical Engines and digital computers are very good at doing things
over and over many times, very quickly. By inventing an instruction
that backs up the card-reading device to a specified previous card, so
that the sequence of instructions can be executed a number of times,
Ada created the loop--perhaps the most fundamental procedure
in every contemporary programming language.

It was the conditional jump that brought Ada's gifts as a logician into
play. She came up with yet another instruction for manipulating the
card-reader, but instead of backing up and repeating a sequence of
cards, this instruction enabled the card-reader to jump to another card
in any part of the sequence, if a specific condition was satisfied. The
addition of that little "if" to the formerly purely arithmetic list of
operations meant that the program could do more than calculate. In a
primitive but potentially meaningful way, the Engine could now make
decisions.

She also noted that machines might someday be built with capabilities
far beyond those possible with Victorian era technology, and speculated
about the possibility of whether such machines could ever achieve
intelligence. Her argument against artificial intelligence, set forth in her
"Observations," was immortalized almost a century later by another
software prophet, Alan Turing, who dubbed her line of argument "Lady
Lovelace's Objection." It is an opinion that is still frequently heard in
debates about machine intelligence: "The Analytical Engine," Ada
wrote, "has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform."

It is not known how and when Ada became involved in her
clandestine and disastrous gambling ventures. No evidence has
ever been produced that Babbage had anything to do with introducing
Ada to what was to be her lifelong secret vice. For a time, Lord
Lovelace shared Ada's obsession, but after incurring significant losses
he stopped. She continued, clandestinely.

Babbage became deeply involved in Ada's gambling toward the end of
her life. For her part, Ada helped Babbage in more than one scheme to
raise money to construct the Analytical Engine. It was a curious
mixture of vice, high intellectual adventure, and bizarre
entrepreneurship. They built a tic-tac-toe machine, but gave up on it
as a moneymaking venture when an adviser assured them that P. T.
Barnum's General Tom Thumb had sewn up the market for traveling
novelties. Ironically, although Babbage's game-playing machines were
commercial failures, his theoretical approach created a foundation for
the future science of game theory, scooping even that twentieth-

century genius John von Neumann by about a hundred years.

It was Charley and Ada's attempt to develop an infallible system for
betting on the ponies that brought Ada to the sorry pass of twice
pawning her husband's family jewels, without his knowledge, to pay off
blackmailing bookies. At one point, Ada and Babbage--never one to
turn down a crazy scheme--used the existing small scale working
model of the Difference Engine to perform the calculations required by
their complex handicapping scheme. The calculations were based on
sound approaches to the theory of handicapping, but as the artificial
intelligentsia were to learn over a century later, even the best modeling
programs have trouble handling truly complex systems. They lost big.
To make matters worse, when she compounded her losses Ada had to
turn to her mother, who was not the most forgiving soul, to borrow the
money to redeem the Lovelace jewels before her husband could learn
of their absence.

Ada died of cancer at the age of thirty-six. Babbage outlived her by
decades, but without Ada's advice, support, and sometimes stern
guidance, he was not able to complete his long-dreamed-of Analytical
Engine. Because the toolmaking art of his day was not up to the
tolerance demanded by his designs, Babbage pioneered the use of
diamond-tipped tools in precision-lathing. In order to systematize the
production of components for his Engine, he devised methods to mass-
manufacture interchangeable parts and wrote a classic treatise on what
has since become known as "mass production."

Babbage wrote books of varying degrees of coherence, made
breakthroughs in some sciences and failed in others, gave brilliant and
renowned dinner parties with guests like Charles Darwin, and seems to
have ended up totally embittered. Bowden noted that "Shortly before
Babbage died he told a friend that he could not remember a single
completely happy day in his life: 'He spoke as if he hated mankind in
general, Englishmen in particular, and the English Government and
Organ Grinders most of all.'"

While Ada Lovelace has been unofficially known to the inner circles of
programmers since the 1950s, when card-punched batch-processing
was not altogether different from Ada's kind of programming, she has
been relatively unknown outside those circles until recently. In the
1970s, the U.S. Department of defense officially named its
"superlanguage" after her.

George Boole
Although it came too late to assist in the original design of the
Analytical Engine, yet another discovery that was to later become
essential to the construction of computers was made by a
contemporary of Babbage and Lovelace. The creation of an algebra of
symbolic logic was the work of another mathematical prodigy and
British individualist, but one who worked and lived in a different world,
far away from the parlors of upper-class London.

A seventeen-year-old Englishman by the name of George Boole was

http://ogham.ucc.ie/gb.html

struck by an astonishing revelation while walking across a meadow one
day in 1832. The idea came so suddenly, and made such a deep
impact on his life, that it led Boole to make pioneering if obscure
speculations about a heretofore unsuspected human facility that he
called "the unconscious." Boole's contribution to human knowledge was
not to be in the field of psychology, however, but in a field of his own
devising. As Bertrand Russell remarked seventy years later, Boole
invented pure mathematics.

Although he had only recently begun to study mathematics, the
teenage George Boole suddenly saw a way to capture some of the
power of human reason in the form of an algebra. And Boole's
equations actually worked when they were applied to logical problems.
But there was a problem, and it wasn't in Boole's concept. The
problem, at the time, was that nobody cared. Partly because he was
from the wrong social class, and partly because most mathematicians
of his time knew very little about logic, Boole's eventual articulation of
this insight didn't cause much commotion when he published it. His
revelation was largely ignored for generations after his death.

When the different parts of computer technology converged
unexpectedly a hundred years later, electrical engineers needed
mathematical tools to make sense of the complicated machinery they
were inventing. The networks of switches they created were electrical
circuits whose behavior could be described and predicted by precise
equations. Because patterns of electrical pulses were now used to
enclose logical operations like "and," "or," and the all important "if," as
well as the calculator's usual fare of "plus," "minus," "multiply," and
"divide," there arose a need for equations to describe the logical
properties of computer circuits.

Ideally, the same set of mathematical tools would work for both
electrical and logical operations. The problem of the late 1930s was
that nobody knew of any mathematical operations that had the power
to describe both logical and electrical networks. Then the right kind of
mind looked in the right place. An exceptionably astute graduate
student at MIT named Claude Shannon, who later invented information
theory, found Boole's algebra to be exactly what the engineers were
looking for.

Without Boole, a poverty-stricken, self-taught mathematics teacher
who was born the same year as Ada, the critical link between logic and
mathematics might never have been accomplished. While the Analytical
Engine was an inspiring attempt, it had remarkably little effect on the
later thinkers who created modern computers. Without Boolean
algebra, however, however, computer technology might never have
progressed to the electronic speeds where truly interesting computation
becomes possible.

Boole was right about the importance of his vision, although he
wouldn't have known what to do with a vacuum tube or a switching
circuit if he saw one. Unlike Babbage, Boole was not an engineer. What
Boole discovered in that meadow and worked out on paper two
decades later was destined to become the mathematical linchpin

that coupled the logical abstractions of software with the
physical operations of electronic machines.

Between them, Babbage's and Boole's inspirations can be said to
characterize the two different kinds of motivation that caused
imaginatives over the centuries to try and eventually to succeed in
building a computer. On the one side are scientists and engineers, who
would always yearn for a device to take care of tedious computations
for them, freeing their thoughts for the pursuit of more interesting
questions. On the other side is the more abstract desire of the
mathematical mind to capture the essence of human reason in a set of
symbols.

Ada, who immediately understood Babbage's models when she saw
them, and who was tutored by De Morgan, the one man in the world
best equipped to understand Boole, was the first person to speculate at
any length about the operations of machines capable of performing
logical as well as numerical operations. Boole's work was not published
until after Lady Lovelace died. Had Ada lived but a few years longer,
her powerful intuitive grasp of the principles of programming would
have been immeasurably enhanced by the use of Boolean algebra.

Babbage and Lovelace were British aristocrats during the height of the
Empire. Despite the derision heaped on Babbage in some quarters for
his often-peculiar public behavior, he counted the Duke of Wellington,
Charles Dickens, and Prince Albert among his friends. Ada had access
to the best tutors, the finest laboratory equipment, and the latest
books. They were both granted the leisure to develop their ideas and
the privilege of making fools of themselves of the Royal Society, if they
desired.

Boole was the son of a petty shopkeeper, which wasn't the best route
to a good scientific education. At the age of sixteen, his family's
precarious financial situation obliged Boole to secure modest
employment as a schoolteacher. Faced with the task of teaching his
students something about mathematics, and by now thoroughly
Lincolnesque in his self-educating skills, Boole set out to learn
mathematics. He soon learned that it was the most cost-effective
intellectual endeavor for a man of his means, requiring no laboratory
equipment and a fairly small number of basic books. At seventeen he
experienced the inspiration that was to result in his later work, but he
had much to learn about both mathematics and logic before he was
capable of presenting his discovery to the world.

At the age of twenty he discovered something that the greatest
mathematicians of his time had missed--an algebraic theory of
invariance that was to become an indispensable tool for Einstein when
he formulated the theory of relativity. In 1849, after his long years as
an elementary-school teacher, Boole's mathematical publications
brought him an appointment as professor of mathematics at Queen's
College, Cork, Ireland. Five years later, he published An investigation of
the laws of thought, on which are founded the Mathematical Theories
of Logic and Probabilities.

Formal logic had been around since the time of the Greeks, most widely

http://www.ucc.ie/
http://www.ucc.ie/

known in the syllogistic form perfected by Aristotle, the simplified
version of which most people learn no more than: "All men are mortal.
Socrates is a man. Therefore Socrates is mortal." After thousands of
years in the same form, Aristotelian logic seemed doomed to remain on
the outer boundaries of the metaphysical, never to break through into
the more concretely specified realm of the mathematical, because it
was still just a matter of words. The next level of symbolic precision
was missing.

For over a thousand years, the only logic-based system that was
expressible in symbols rigorous and precise enough to be called
"mathematical" had been the geometry set down by Euclid. Just as
Euclid set down the basic statements and rules of geometry in axioms
and theorems about spatial figures, Boole set down the basics of logic
in algebraic symbols. This was no minor ambition. While knowledge of
geometry is a widely useful tool for getting around the world, Boole
was convinced that logic was the key to human reason itself. He
knew that he had found what every metaphysician from Aristotle to
Descartes had overlooked. In his first chapter, Boole wrote:

1. The design of the following treatise is to investigate the fundamental
laws of those operations of the mind by which reasoning is performed; to
give expression to them in the symbolic language of a Calculus, and upon
this foundation to establish a science of Logic and construct its method . . .
to collect from the various elements of truth brought to view in the course
of these inquiries some probable imitations concerning the nature and
constitution of the human mind. . . .

2. . . . To enable us to deduce correct inferences from given premises is
not the only object of logic . . . these studies have also an interest of
another kind, derived from the light which they shed on the intellectual
powers. They instruct us concerning the mode in which language and
number serve as instrumental aids to the process of reasoning; they reveal
to some degree the connexion between different powers of our common
intellect; they set before us . . . the essential standards of truth and
correctness--standards not derived from without, but deeply founded in the
constitution of the human faculties . . . To unfold the secret laws and
relations of those high faculties of thought by which all beyond the merely
perceptive knowledge of the world and of ourselves is attained or matured,
is an object which does not stand in need of commendation to a rational
mind.

Although his discovery had profound consequences in both pure
mathematics and electrical engineering, the most important elements of
Boole's algebra of logic were simple in principle. He used the algebra
everybody learns in school as a starting point, made several small but
significant exceptions to the standard rules of algebraic combination,
and used his special version to precisely express the syllogisms of
classical logic.

The concept Boole used to connect the two heretofore different thinking
tools of logic and calculation was the idea of a mathematical system in
which there were only two quantities, which he called "the Universe"
and "Nothing" and denoted by the signs 1 and 0. Although he didn't
know it at the time, Boole had invented a two-state system for
quantifying logic that also happened to be a perfect method for
analyzing the logic of two-state physical devices like electrical

relays or vacuum tubes.

By using the symbols and operations specified, logical propositions
could be reduced to equations, and the syllogistic conclusions could be
computed according to ordinary algebraic rules. By applying purely
mathematical operations, anyone who knew Boolean algebra could
discover any conclusion that was logically contained in any set of
specified premises.

Because syllogistic logic so closely resembles the thought processes of
human reasoning, Boole was convinced that his algebra not only
demonstrated a valid equivalence between mathematics and logic, but
also represented a mathematical systemization of human thought.
Since Boole's time, science has learned that the human instrument of
reason is far more complicated, ambiguous, unpredictable, and
powerful that the tools of formal logic. But mathematicians have found
that Boole's mathematical logic is much more important to the
foundation of their enterprise than they first suspected. And the
inventors of the first computers learned that a simple system with only
two values can weave very sophisticated computations indeed.

The construction of a theoretical bridge between mathematics and logic
had been gloriously begun, but was far from completed by Boole's
work. It remained for later minds to discover that although it is
probably not true that the human mind resembles a machine, there is
still great power to be gained by thinking about machines that
resemble the operations of the mind.

Nineteenth-century technology simply wasn't precise enough, fast
enough, or powerful enough for ideas like those of Babbage, Lovelace,
and Boole to become practicalities. The basic science and the industrial
capabilities needed for making several of the most important
components of modern computers simply didn't exist. There were still
important problems that would have to be solved by the inventors
rather than the theorists.

The next important development in the history of computation, and the
last important contribution of the nineteenth century, had nothing to do
with calculating tables of logarithms or devising laws of thought. The
next thinker to advance the state of the art was Herman Hollerith, a
nineteen-year-old employee of the United States Census Office. His
role would have no effect on the important theoretical foundations of
computing. Ultimately, his invention became obsolete. But his small
innovation eventually grew into the industry that later came to
dominate the commercial use of computer technology.

Hollerith made the first important American contribution to the
evolution of computation when his superior at the Census Office set
him on a scheme for automating the collection and tabulation of data.
On his superior's suggestion, he worked out a system that used
cards with holes punched in them to feed information into an
electrical counting system.

The 1890 census was the point in history where the processing of data

as well as the calculation of mathematical equations became the object
of automation. As it turned out, Hollerith was neither a mathematician
nor a logician, but a data processor. He was grappling, not with
numerical calculation, but with the complexity of collecting, sorting,
storing, and retrieving a large number of small items in a collection of
information. Hollerith and his colleagues were unwitting forerunners of
twentieth-century information workers, because their task had to do
with finding a mechanical method to keep track of what their
organization knew.

Hollerith was introduced to the task by his superior, John Shaw Billings,
who had been worrying about the rising tide of information since 1870,
when he was hired by the Census Office to develop new ways to handle
large amounts of information. Since he was in charge of the collection
and tabulation of data for the 1880 and 1890 census, Billings was
acutely aware that the growing population of the nation was straining
the ability of the government to conduct the constitutionally mandated
survey every ten years. In the foreseeable future, the flood of
information to be counted and sorted would take fifteen or twenty
years to tabulate!

Like the stories about the origins of other components of computers,
there is some controversy about the exact accreditation for the
invention of the punched-card system. One account by a man named
Willcox, who worked with both Billings and Hollerith in the census office
stated:

While the returns of the Tenth (1881) Census were being tabulated at
Washington, Billings was walking with a companion through the office in
which hundreds of clerks were engaged in laboriously transferring items of
information from the schedules to the record sheets by the slow and
heartbreaking method of hand tallying. As they were watching the clerks he
said to his companion, 'There ought to be some mechanical way of doing
this job, on the principle of the Jacquard loom, whereby holes in a card can
regulate the pattern to be woven.' The seed fell on good ground. His
companion was a talented young engineer in the office who first convinced
himself that the idea was practicable and then that Billings had no desire
to claim or use it.

The "talented young engineer," of course, was Hollerith, who wrote this
version in 1919:

One Sunday evening at Dr. Billings' tea table, he had said to me that there
ought to be a machine for doing the purely mechanical work of tabulating
population and similar statistics. We talked the matter over and I
remember . . . he thought of using cards with the description of the
individual shown by notches punched in the edge of the card. . . .After
studying the problem I went back to Dr. Billings and said that I thought I
could work out a solution for the problem and asked him if he would go in
with me. The Doctor said that he was not interested any further than to
see some solution of the problem worked out.

The system Hollerith put together used holes punched in designated
locations on cardboard cards to represent the demographic
characteristics of each person interviewed. Like Jacquard's and
Babbage's cards, and the "player pianos" then in vogue, the holes in
Hollerith's cards were meant to allow the passage of mechanical
components. Hollerith used an electromechanical counter in which

copper brushes closed certain electrical circuits if a hole was
encountered, and did not close a circuit if a hole was not present.

An electrically activated mechanism increased the running count in
each category by one unit every time the circuit for that category was
closed. By adding sorting devices that distributed cards into various
bins, according to the patterns of holes and the kind of tabulation
desired, Hollerith not only created the ability to keep up with
large amounts of data, but created the ability to ask new and
more complicated questions about the data. The new system was
in place in time for the 1890 census.

Hollerith obtained a patent on the system that he had invented just in
time to save the nation from drowning in its own statistics. In 1882-83,
he was an instructor in mechanical engineering at the Massachusetts
Institute of Technology, establishing the earliest link between that
institution and the development of computer science and technology. In
1896, Hollerith set up the "Tabulating Machine Company" to
manufacture both the cards and the card-reading machines. In 1900,
Hollerith rented his equipment to the Census Bureau for the Twelfth
Census.

Some years later, Hollerith's Tabulating Machine had become an
institution known as "International Business Machines," run by a
fellow named Thomas Watson, Senior. But there were two World Wars
ahead, and several more thinkers--the most extraordinary of them all--
still to come before a manufacturer of tabulating machines and punch
cards would have anything to do with true computers. The modern-day
concerns of this company--selling machines to keep track of the
information that goes along with doing business--would have to wait
for some deadly serious business to be transacted.

The War Department, not the Census Office or a business machine
company, was the mother of the digital computer, and the midwives
were many--from Alan Turing's British team who needed a special kind
of computing device to crack the German code, to John von Neumann's
mathematicians at Los Alamos who were faced with the almost
insurmountable calculations involved in making the atomic bomb, to
Norbert Weiner's researchers who were inventing better and faster
ways to aim antiaircraft fire, to the project of the Army Ballistic
Research Laboratory that produced the Electronic Numerical Integrator
and Calculator (ENIAC).

It would be foolish to speculate about what computers might become
in the near future without realizing where they originated in the recent
past. The historical record is clear and indisputable on this point:
ballistics begat cybernetics. ENIAC, the first electronic digital computer,
was originally built in order to calculate ballistic firing tables. When
ENIAC's inventors later designed the first miniature computer, it was
the BINAC, a device small enough to fit in the nose cone of an ICBM
and smart enough to navigate by the position of the stars.

Although the first electronic digital computer was constructed in order
to produce more accurate weapons, the technology would not have

been possible without at least one important theoretical breakthrough
that had nothing to do with ballistics or bombs. The theoretical
origins of computation are to be found, not in the search for
more efficient weaponry, but in the quest for more powerful and
elegant symbol systems.

The first modern computer was not a machine. It wasn't even a
blueprint. The digital computer was conceived as a symbol
system--the first automatic symbol system --not as a tool or a
weapon. And the person who invented it was not concerned with
ballistics or calculation, but with the nature of thought and the nature
of machines.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Three:
The First Hacker and
his Imaginary Machine

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/texts/tft/1.html0
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Three:
The First Hacker and His Imaginary
Machine
Throughout the winter of 1936, a young Cambridge don put the finishing
touches on a highly technical paper about mathematical logic that he
didn't expect more than a dozen people around the world to understand.
It was an unusual presentation, not entirely orthodox by the rather rigid
standards of his colleagues. The young man wasn't entirely orthodox,
himself. Although his speech revealed his upper-middle class origins, his

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

manner of dress, his erratic grooming, and his grating voice put off most
of his peers. An outsider to the loftier academic-social circles of the
university, he had few friends, preferring to spend his time at
mathematics, chemistry experiments, chess puzzles, and long runs in
the countryside.

Computation, when it was finally invented, a century after Babbage, did
not come in the form of some new gadget in an inventor's workshop or
a scientist's laboratory. The very possibility of building digital
computers was given to the world in the form of an esoteric
paper in a mathematics journal in 1936. Nobody realized at the
time that this peculiar discovery in the obscure field of
metamathematics would eventually lead to a world-changing
technology, although the young author, Alan Mathison Turing,
knew he was on the track of machines that could simulate the
human thought processes.

That mathematics paper was a pivotal point in the cultural history of
Western civilization. The first move in the intellectual game that
resulted in digital computers was also the last move in another game
that had gone on for millennia. In Egypt and Babylonia, where systems
for measuring land and forecasting the course of the stars originated,
only the priests and their chosen craftsmen were privileged to know the
esoteric arts of reckoning. During the flowering of Greek civilization into
the fifth and sixth centuries B.C., these protosciences were shaped into
the mental tools known as axiomatic systems.

In an axiomatic system you start with premises that are known to be
true, and rules that are known to be valid, in order to produce new
statements that are guaranteed to be true. Conclusions can be reached
by manipulating symbols according to sets of rules. Euclidean geometry
is the classic example of the kind of generally useful tools made
possible by formal axiomatic systems.

An axiomatic system is a tool for augmenting human thought. Except
for rare "lightning" calculators, people are not able to add two six-
figure numbers in their head. Give virtually all people over the age of
ten a piece of paper and a pencil, however, and they'll tell you the
answer in less than a minute. The magic ingredient that makes a
schoolchild into a calculating machine is the kind of step-by-step recipe
for performing a calculation that is known as an algorithm. The reason
we know such algorithms work is because they are based on the formal
system known as arithmetic, which we know to be true.

What Turing's paper did, and what made digital computers
possible, resulted in the millennia-long effort to reduce the
various formal systems to one basic system that underlies them
all. Science--our civilization's preeminent system for gathering and
validating knowledge--was built on mathematics, which was in turn a
logical formalization of the primitive number theories of the Babylonians
and the Greeks. Computation was the unexpected result of the

http://www.wadham.ox.ac.uk/%7Eahodges/Turing.html

attempt to prove that the mathematical truths could be reduced
to logical truths.

At the same time that our civilization's methods for predicting and
understanding the universe grew powerful as the result of these
intellectual systems (i.e., science, mathematics, and logic), a few
people continued to ask whether these same systems could be reduced
to their basic components. If all sciences, when they become advanced
enough, can be reduced to mathematical equations, is it possible to
reduce mathematics to the most fundamental level of logic?

Since our certainty in the completeness and consistency of our
knowledge system could depend on whether such a reduction was
possible, it was very disconcerting to Western thinkers when evidence
began to appear that there were exceptions, anomalies, paradoxes--
holes in the structure of mathematics that might prevent any such
grand reduction of formal systems. Those two intellectual quests--the
effort to reduce mathematics to a fundamental, formal symbol system,
and the attempt to patch up the paradoxes that cropped up during the
pursuit of that grand reduction--led directly but unexpectedly to
computation.

In the first decades of the twentieth century, mathematicians and
logicians were trying to formalize mathematics. David Hilbert and John
von Neumann set down the rules of formalism in the 1920s (as we
shall see in the next chapter). Before Hilbert and von Neumann, Alfred
North Whitehead and Bertrand Russell demonstrated in their Principia
Mathematica that some aspects of human reasoning could be formally
described, thus linking this awakened interest in mathematical logic to
the ideas of the long-forgotten originator of the field, George Boole.
The idea of formal systems was of particular interest, because it
appeared to bridge the abstractions of mathematics and the mysteries
of human thought.

A formal system is a rigidly defined kind of game that specifies rules
for manipulating tokens. The qualifications for making a formal system
are very much like the rules for any other game. To tell someone how
to play a game, and for the set of rules to qualify as a formal system,
the same three aspects of the game must be communicated -- the
nature of the tokens, a description of the starting position (or the
starting layout of the "board"), and a listing of what moves are allowed
in any given position. Chess checkers, mathematics, and logic are
examples of formal systems that satisfy these criteria. By the 1930s,
the effort to reduce mathematics to logically secure foundations
brought about several attempts to treat arithmetic -- the branch of
mathematics concerned with operations on numbers -- as a formal
system.

In 1936, at the age of twenty-four, Alan M. Turing established
himself as one of the greatest mathematical prodigies of all
time when he pointed out to his colleagues that it was possible
to perform computations in number theory by means of a
machine -- a machine that embodied the rules of a formal

system. Although the machine itself didn't exist as a working model,
Turing emphasized from the beginning that such machines could
actually be built. His finding was a milestone in the effort to formalize
mathematics and, at the same time, a watershed in the history of
computation.

In his brilliant solution to one of the key metamathematical problems
posed by the formalists, Alan Turing described in precise
mathematical terms how an automatic formal system with
extremely simple rules of operation could have very powerful
capabilities. An automatic formal system is a physical device which
automatically manipulates the tokens of a formal system according to
the system's rules. Turing's theoretical machine was both an example
of his theory of computation and a proof that a certain kind of
computing machine could, in fact, be constructed.

When he brought mathematics and logic together in the form of a
machine, Turing made symbol-processing systems possible. He
proposed that the vast majority of intellectual problems could be
converted to the form "find a number n such that . . . " Even more
important than this provocative statement connecting the abstractions
of intellect with the more concrete realm of numbers -- an implication
that still inspires the efforts of artificial intelligence researchers -- was
Turing's recognition that the numbers were more important as symbols
in this case than as elements of mathematical calculations.

One of Turing's greatest insights was his understanding, from the very
beginning, of something that the majority of the computer priesthood
has yet to understand -- the fact that numbers are only one
possible way of interpreting the internal states of an automatic
formal system. Babbage's "patterns of action" were now formalized
with mathematical rigor. Turing's "states" provided the crucial
metaphor for bridging the power of human cognition and the
capabilities of machines.

What, Turing asked, does a human symbol processor do when
performing a calculation? He decided that mental calculations consist of
operations for transforming the input numbers into a series of
intermediate states which progress from one to the next according to a
fixed set of rules, until an answer is found. Sometimes, people use
pencil and paper to keep track of the states of their calculations. The
rules of mathematics require more rigid definitions than those provided
by the fussily described human states of mind discussed by
metaphysicians, so Turing concentrated on defining these states in a
way that was so clear and unambiguous that the description could be
used to command the operations of a machine.

Turing started with a precise description of a formal system, in
the form of "instruction tables" describing which moves to make
for every possible configuration of states in the system. He then
proved that the description of these instructions, the steps of formal
axiomatic system like logic, and the machine states that make up the
"moves" in an automatic formal system are all equivalent to one

another. Such matters as formal systems and Turing machines sound
very far away from what computers actually do, but in fact they
underlie the entire technology of digital computers -- which wasn't to
come into existence until over a decade after Alan Turing published his
epochal paper.

The process of computation was graphically depicted in Turing's paper
when he asked the reader to consider a device that can read and write
simple symbols on a paper tape that is divided into squares. The
"reading/writing head" can move in either direction along the tape, one
square at a time, and a control unit that directs the actions of the head
can interpret simple instructions about reading and writing symbols in
squares. The single square that is "scanned" or "read" at each stage is
known as the active square. Imagine that new sections can be added
at either end of the existing tape, so it is potentially infinite.

Suppose the symbols are "X" and "O". Suppose that the device can
erase either symbol when it reads it in the active square and replace it
with the other symbol (i.e., erase an X and replace it with an O, and
vice versa). The device also has the ability to move left or right, one
square at a time, according to instructions interpreted by the control
unit. The instructions cause a symbol to be erased, written, or left the
same, depending on which symbol is read.

Any number of games can be constructed using these rules, but they
would not all necessarily be meaningful. One of the first things Turing
demonstrated was that some of the games constructed under these
rules can be very sophisticated, considering how crude and automaton-
like the primitive operations seem to be. The following example
illustrates how this game can be used to perform a simple calculation.

The rules of the game to be played by this Turing machine are simple:
Given a starting position in the form of a section of tape with some Xs
and Os on it, and a starting square indicated, the device is to perform
the actions dictated by a list of instructions and follows the succeeding
instructions one at a time until it reaches an instruction that forces it to
stop. (If there is no explicit instruction in the table of instructions for a
particular tape configuration, there is nothing that the machine can do
when it reaches that configuration, so it has to stop.)

Each instruction specifies a particular action to be performed if there is
a certain symbol on the active square at the time it is read. There are
four different actions; they are the only legal moves of this game. They
are:

Replace O with X.
Replace X with O.
Go one square to the right.
Go one square to the left.

An example of an instruction is: "If there is an X on the active square
replace it with O." This instruction causes the machine to perform the
second action listed above. In order to create a "game," we need to
make a list that specifies the number of the instruction that is being
followed at every step as well as the number of the instruction that is

to be followed next. That is like saying "The machine is now following
(for example) instruction seven, and the instruction to be followed next
is (for example) instruction eight."

Here is a series of instructions, given in coded form and the more
English-like translation. Taken together, these instructions constitute an
"instruction table" or a "program" that tells a Turing machine how to
play a certain kind off game:

1X02 (Instruction #1: if an X is on the active square, replace
it with O, then execute instruction #2.)

2OR3 (Instruction #2: if an O is on the active square, go right
one square and then execute instruction #3.)

3XR3 (Instruction #3: if an X is on the active square, go right
one square and then execute instruction #3;

3OR4 but if an O is on the active square, go right one square
and then execute instruction #4.)

4XR4 (Instruction #4: if an X is on the active square, go right
one square and then execute instruction #4;

4OX5 but if an O is on the active square, replace it with X and
then execute instruction #5.)

5XR5 (Instruction #5: if an X is on the active square, go right
one square and then execute instruction #5;

5OX6 but if an O is on the active square, replace it with X and
then execute instruction #6.)

6XL6 (Instruction #6: if an X is on the active square, go left
one square and then execute instruction #6

6OL7 but if an O is on the active square, go left one square and
then execute instruction #7.)

7XL8 (Instruction #7: if an X is on the active square, go left
one square and then execute instruction #8.)

8XL8 (Instruction #8: if an X is on the active square, go left
one square and then execute instruction #8;

8OR1 but if an O is on the active square, go right one square
and then execute instruction #1.)

Note that if there is an O on the active square in instruction #1 or #7,
or if there is an X on the active square in instruction #2, the machine
will stop.

In order to play the game (run the program) specified by the list of
instructions, one more thing must be provided: a starting tape
configuration. For our example, let us consider a tape with two Xs on
it, bounded on both sides by an infinite string of Os. The changing
states of a single tape are depicted here as a series of tape segments,
one above the other. The active square for each denoted by a capital X
or O. When the machine is started it will try to execute the first
available instruction, instruction #1. The following series of actions will
then occur:

Instruction Tape What the Machine Does
#1 ...ooXxooooooo... One (of two) Xs is erased.
#2 ...ooOxooooooo...

#3 ...oooXooooooo... Tape is scanned to the
#3 ...oooxOoooooo... right.
#4 ...oooxoOooooo...
#5 ...oooxoXooooo... Two Xs are written.
#5 ...oooxoxOoooo...
#6 ...oooxoxXoooo...

#6 ...oooxoXxoooo... Scanner returns to the
#6 ...oooxOxxoooo... other original X.
#7 ...oooXoXXoooo...
#8 ...ooOxoxxoooo...
#1 ...oooXoxxoooo...

#2 ...oooOoxxoooo... This X is erased.

#3 ...ooooOxxoooo... Scanner moves to the right
#4 ...oooooXxoooo... of the two Xs that were
#4 ...oooooxXoooo... written earlier.
#4 ...oooooxxOooo...

#5 ...oooooxxXooo... Two more Xs are written.
#5 ...oooooxxxOoo...
#6 ...oooooxxxXoo...

#6 ...oooooxxXxoo... Scanner looks for any more
#6 ...oooooxXxxoo... original Xs.
#6 ...oooooXxxxoo...
#6 ...ooooOxxxxoo...

#7 ...oooOoxxxxoo... The machine stops because there is no
instruction for #7 if O is being scanned.

This game may seem rather mechanical. The fact that it is mechanical
was one of the points Turing was trying to make. If you look at the
starting position, note that there are two adjacent Xs. Then look at the
final position and note that there are four Xs. If you were to use the
same instructions, but start with a tape that had five Xs, you would
wind up with ten Xs. This list of instructions in the specification for a
calculating procedure that will double the input and display the output.
It can, in fact, be done by a machine.

In essence, every Turing machine moves marks from one position on a
tape to another position on a tape, in the way the procedure outlined
above moved Xs and Os from square to square. These days, the marks
can be electronic impulses in microcircuits, and the tape can be an
array of memory locations in a memory chip, but the essential idea is
the same. Turing proved that his hypothetical machine is an automated
version of a formal system specified by the starting position (the
pattern of Os and Xs on the tape at the beginning of the computation)
and the rules (the instructions given by the instruction tables). The
moves of the game are the changing states of the machine that
correspond to the specified steps of the computation.

Turing then proved that for any formal system, there exists a
Turing machine that can be programmed to imitate it. This kind
of general formal system with the ability to imitate any other formal
system was what Turing was getting at. These systems are now known
as "universal Turing machines." The theory was first stated in a paper

http://www.wadham.ox.ac.uk/%7Eahodges/T-machine.html

with the forbidding title "On Computable Numbers, with an application
to the Entscheidungsproblem."

The Turing Machine was a hypothetical device Turing invented on the
way to settling a critical question about the foundations of mathematics
as a formalized means of thinking. He showed that his device could
solve infinitely many problems, but that there are some
problems that cannot be solved because there is no way of
predicting in advance whether or when the machine is going to
stop. Here is where the parting of the ways between metamathematics
and computation occurred.

Our simple example of a doubling program took only twenty-six steps.
But there is no way of knowing whether or not other programs (which
can be direct translations of theorems in number theory) will ever stop.
By proving this, Turing made an equivalent point about all mechanical
systems (i.e., systems in which the procedures are definite enough to
be carried out by a machine).

Turing and his colleagues ended the long search for a logically certain
basis underlying formal systems by making the shocking discovery that
there are a number of important features about formal systems about
which we can never be certain. Formal systems, by their very nature,
have certain inherent limitations. At this point, the theory of
computation became something more than an important branch of
metamathematics, as the properties of formal systems faded into the
background and the properties of machines emerged in a wholly
unexpected and dramatic manner -- because at the same time that
Turing put a limit on the capabilities of formal systems, he
showed that there is indeed such a thing as a universal formal
system. And that is what a computer is, in the most basic sense.

The way the universal Turing machine imitates other Turing machines
is as automatic as the way our doubling machine multiplies the input by
two. Assuming that the control unit of the device is capable of
interpreting simple instructions -- something that had been a matter
for toolmakers, not mathematicians since Babbage's time -- it is
possible to encode a more complex list of instructions describing
various Turing machines and put them onto the input tape, along with
the starting position.

Just as the instructions followed by the machine can be stated in
English (or German or French, etc.), or in an abbreviated form like
"7XL8," they can be encoded in an even more primitive form. A code
can be devised, using the same Xs and Os, that can uniquely represent
every instruction and instruction table (program). Both the instructions
and the data can be put onto the same tape. A universal Turing
machine can then scan that coded tape and perform the function
specified in the code (doubling the number on the data portion of the
tape, in our example).

This code can be interpreted by a machine, a machine that
automatically manipulates the tokens, given a list of instructions and a

starting configuration. When the machine stops, you read the tape and
you get the output of the program. In this case, you put the number
you want to double in the starting configuration, and then let the
machine metaphorically clank away one square at a time, erasing and
writing Os or Xs. When the machine stops, you count the Xs in the final
tape configuration.

The list of instructions is what turns the universal Turing machine into
the doubling machine. Mechanically, there is no difference between the
two machines. The particular instructions described by the code are
what the universal Turing machine operates upon. If you can describe,
in similarly codable instructions, a machine for tripling, or extracting
square roots, or performing differential equations, then your basic,
dumb old universal Turing machine can imitate your tripling machine or
square root machine.

That ability to imitate other machines is what led to computers.
The numbers (or Xs and Os) on the tape aren't that important. They
are only symbols for states of a process -- markers in a "doubling
game." The list of instructions (the program) is what enables the
machine to double the input number. The instructions, not the symbols
that keep track of the way they are carried out -- the rules, not the
markers -- are what make the Turing machine work. Universal Turing
machines are primarily symbol manipulators. And digital computers are
universal Turing machines.

It isn't easy to think of the rules of a game as a kind of machine. The
task is somewhat easier if you think about "mechanical processes" that
are so clearly and specifically defined that a machine can perform them
by referring to an instruction table. All universal Turing machines
are functionally identical devices for following the program
specified by an instruction table. The instruction tables can
differ, and they can turn the universal Turing machine into
many different kinds of machine. For this reason, the programs
are sometimes called "virtual machines."

The distinction between a universal Turing machine and the many
different Turing machines it is able to imitate is a direct analogy to
digital computers. Like universal Turing machines, all digital computers
are functionally identical. At the most basic level, every digital
computer operates in the way our doubling machine did with the
squares and Os and Xs. Instead of building a different physical machine
to solve different problems, it is more practical to describe to an
instruction-following machine different virtual machines (programs)
that use this one-square-at-a-time mechanical instruction-following
process to solve complicated problems through a pattern of simple
operations.

Following instructions is the nature of digital computers. The difference
between a computer calculator and a computer typewriter, for
example, lies in the instructions it follows -- the coded description it is
given of the virtual machine it is meant to imitate in order to perform a
task. Since computers understand "bits" that can correspond to O and
X, or 0 and 1, or "on" and "off," you can use these symbols to write

descriptions that turn the general machine into the specific machine
you want. That's what programmers do. They think of machines people
might want to use, and figure out ways to describe those machines to
general machines -- computers, that is.

It would be too time-consuming to achieve anything significant in
programming if programmers had to spend all their time thinking of
ways to describe machines in strings of Os and Xs. The O and X code is
similar to what is now called machine language, and a relatively small
number of programmers are actually able to write programs in it. But
what if you could build a virtual machine on top of a virtual
machine? What if there were a coded program written in terms of Os
and Xs, much like the system we described for the doubling machine,
except that this new system's task is to translate symbols that humans
find easier to use and understand -- instructions like "go left" or even
"double this number" -- into machine language?

Assembly language, a close relative of machine language except that is
uses recognizable words instead of strings of Xs and Os, is a lot more
manageable than machine language, so that's what most programmers
use when they write video games or word processors. Assembly
language makes it easier to manipulate the information in the
"squares" -- the memory cells of the computer -- by using words
instead of numbers. You use the translation program described above,
called an assembler, to translate assembly language into machine
language.

Every different microprocessor (the actual silicon chip hardware at the
core of every modern computer) has a list of around a hundred
primitive machine language operations -- known as "firmware" -- wired
into it. When the assembler follows the instructions in the assembly
language programs, using machine language to talk to the
microprocessor, the virtual machine meets the actual machine, and the
computer is able to accomplish the specified task for the human who
started the whole process.

Since you have to accomplish tasks in assembly language by telling the
computer very specifically where to find the information you want,
when to move it into an "active square" called an accumulator, and
where to store it when it is processed, writing anything complicated in
assembly language can be a chore -- like writing a book with
semaphore flags, or measuring a city with a yardstick.

For example, to add two numbers in assembly language you have to
specify what the first number is and assign it to the accumulator, then
you have to specify the second number and instruct the machine to
add it to the number already in the accumulator. Then you have to
specify where to store the answer, and issue step-by-step instructions
on how to send the answer to your printer or monitor.

Obviously, it is easier to do the whole thing in a procedure like the one
in BASIC: You simply type something on the keyboard, like "PRINT 2 +
3," and some part of the software takes care of accumulators and
memory addresses. Your printer prints out "5," or it is displayed on
your monitor, and the computer doesn't bother you with details about

its internal operations.

At the core of every computer language is something very much like
the doubling machine. Since it is possible to describe machines that
describe machines, under the rules of the universal Turing machine
game, it is possible to write a machine language program that
describes a machine that can translate assembly language into
machine language. Having done that, this new tool can be used to
create yet another level of communication that is even more
manageable than assembly language, by making a code-language that
is still closer to English.

That last virtual machine -- the English-like one -- is called a high-level
programming language. High-level doesn't mean that a language is
intellectually lofty, only that it us a virtual machine interpreted by a
lower-level machine, which in turn may be interpreted by an even
lower level machine, until you get to the lowest level of on and off
impulses that translate the Os and Xs into electronically readable form.
BASIC and FORTRAN and other languages that programmers work with
are actually virtual machines that are described to the computer by
other virtual machines equivalent to the assemblers mentioned above,
known as interpreters and compilers.

The first compiler, however, was not to be written until 1953,
seventeen years after Turing's theoretical paper was published in 1936.
The emergence of the digital computer, based on the principles of
Turing's machine, was stimulated by World War II, which was still four
years in the future. In 1936, Claude Shannon had yet to discover that
the algebra invented by George Boole to formalize logical operations
was identical with the mathematics used to describe switching circuits.
John von Neumann and his colleagues had yet to devise the concept of
stored programming. Norbert Wiener hadn't formalized the description
of feedback circuits in control systems. Several crucial electronic
developments were yet to come.

Although only a half-dozen metamathematicians thought about such
things during the 1930s, the notion of machines whose functions
depend on the descriptions of how they operate happened to have one
real-world application that suddenly became very important toward the
end of the decade. In 1940, the British government developed an
intense interest in Turing's theories.

WWII
A top-secret project code-named "Ultra," under the direction of an
intelligence officer code-named "Intrepid," had captured and brought to
London the secret German cipher machine known as "Enigma." The
machine enabled the Nazi high command to send orders to field
commanders in the form of an uncrackable code. Even though they had
the machine in their hands British intelligence was still baffled by the
encoding mechanism. Even the best of the old-style cryptographers
couldn't suggest a solution.

The British high command recruited brilliant mathematicians, engineers,

and logicians, inadvertently creating one of the seminal research
groups in the field that was to be known as artificial intelligence.
Among them was Donald Michie, then only twenty-two, who was later
to become the leading British machine intelligence researcher. Another
very young colleague who later distinguished himself was I. J. Good, a
prankster who once wrote Her Majesty the Queen suggesting that he
be made peer of the realm, because then his friends would be forced to
remark, "Good Lord, here comes Lord Good," when they saw him
coming.

The place known as Bletchley Park is far less famous than Omaha
Beach, but many historians contend that the European war was won, in
large part, in a closely guarded Victorian mansion in Hertfordshire,
England, by the group of thinkers who succeeded in breaking the
German code. The brilliant, young, unorthodox code-crackers were
housed near Bletchley Park while they performed their role in the top-
secret operation. One of the code breakers was twenty-eight-year-old
Alan Turing.

Turing was eccentric, fun-loving, disheveled, painfully honest, erratic,
introspective, prodigiously and elegantly brilliant, and somewhat inept
socially. Turing was an early model of the similar maladroit and
analogously otherworldly computer hackers who were to come
later: He was a sloppy dresser and a passionate chessplayer, fond of
children's radio programs and dedicated to long-distance running.
(Sometimes he even timed himself with an alarm clock tied around his
waist.) Even one of his few intimate friends described his speech as "a
shrill stammer and crowing laugh which told upon the nerves even of
his friends."

He never quite got the hang of automobiles, which was probably safer,
considering the way Turing's mind wandered far away from the realities
of the roadway. He preferred the battered bicycle of the Cambridge
don. The bicycle and his habit of running twenty or thirty miles to
attend a meeting were the objects of sundry anecdotes about "the
Prof," as Turing was known around Bletchley. He was once detained
by the local constable for bicycling around in a gas mask, which
Truing claimed alleviated his hay fever.

Turing and his colleagues at Bletchley Park ended up solving the
Enigma enigma by devising a series of machines known as "bombes,"
"the Robinsons," and a culminating contraption known as "Colossus."
Their purpose? To imitate "Enigma," of course!

The Bletchley Park devices were by no means universal machines by
Turing's 1936 definition, but they did use important aspects of Turing's
ideas. Using high-speed devices for feeding instructions encoded on
paper tapes, and electrical circuitry for performing simple but tedious
logical operations upon coded messages, the decoding machines began
operating in 1943. The machines enabled the British to crack Enigma's
code, in part by imitating crucial functions of the enemy coding
machine.

The fact that these young academecians had broken the code was a

http://www.cranfield.ac.uk/CCC/BPark/

secret of unparalleled importance, perhaps the most closely kept secret
of the war, because the ability of the Bletchley machines to continue to
successfully decode German messages depended upon the Nazi high
command's continuing ignorance that their unbreakable code had been
cracked.

Despite the importance of this work, early wartime bureaucracy and the
thickets of secrecy surrounding the project threatened to cancel the
incredible strategic advantage the 1943 Enigma breakthrough had
handed the Allies. Turing appealed directly to Winston Churchill, who
gave the project top priority. The codes continued to be cracked
throughout the duration of the war, and in 1944 and 1945 the valuable
information was disguised in the form of other kinds of intelligence,
then relayed to British commanders in the Atlantic.

The tide of the critical U-boat conflict was turned, and the invasion of
Europe became possible, largely because of Turing's success with the
naval version of the Enigma. The Germans never caught on, and
Turing's esoteric work in metamathematics turned out to have
dramatically practical applications after all. Because of the growing
strategic significance of advanced cryptanalysis methods in the cold
war era, the project continued to be held secret for decades after the
war. After 1945, a very few people knew that Turing had done
something important for the war effort but nobody knew exactly what
it was, because he still wasn't allowed to allude to it.

His role at Bletchley wasn't Turing's only wartime contribution. He was
sent over to America, at a time when it was indeed dangerous to take
a North Atlantic cruise, to share crucial aspects of British cryptanalytic
progress with American intelligence and to lend his intelligence to
several American war-related scientific projects.

It was during this American visit that Turing picked up practical
knowledge of electronics. Turing had first become acquainted with what
were then called "electronic valves" when he investigated the possibility
of using the exotic vacuum-tube devices coming out of radar research
to speed up the massive information-processing tasks needed by the
Bletchley code-breakers. In America, Turing was involved in another
hypersecret project, this time involving voice encryption -- what the
spy novels call "scramblers." Because of this work on the device that
was code-named "Delilah," Turing learned his electronics from some of
the best in the business -- the engineers at Bell Laboratories in New
York (including one named Claude Shannon, a prodigy of a different
kind, who will enter the story again).

By the end of the war, the knowledge that electronic technology could
be used to speed up logical switching circuits, and the possibility of
building working models of Turing's universal machines, led His
Majesty's government to once again support an automatic calculating
device. This time, it was not called the "Analytical Engine," but the
"Automatic Computing Engine" -- or ACE, as it became known. At
the end of World War II, despite the work in America of Mauchly and
Eckert (ENIAC's inventors), the British were in an excellent position to
win the race to build the first true electronic digital computer. But
unfortunately for Alan Turing, postwar computer research in Britain

was not pursued as aggressively and on the same scale as the
American effort.

Turing, of course, was in the thick of the postwar computer
development effort, but not at the center, and certainly not in control.
As it turned out, his heroic and secret war work helped to make him
the victim of scientific politics, not their master. His reports on the
hardware and software design for ACE were ambitious, and if the
machine he originally envisioned had been constructed as soon as it
was designed, it would have put ENIAC to shame.

While a succession of other men took over the direction of the
computer projects at the National Physical Laboratory and at the
University of Manchester, Turing hovered at the periphery of the
political power while he put his mind to the actual construction of one
of his long-imaginary universal machines. In this he was hampered by
the attitude prevalent among his peers that upper-middle-class
Cambridge theoreticians simply did not get their hands dirty with
"engineering." But rigid conformity to social standards was not Alan's
strong point. He forged ahead with what he knew was important -- the
development of a science of software.

Programming
Turing's ideas about the proper approach to computer design stressed
the need to build computing capabilities into the program, not the
hardware. He was particularly interested in the programming
operations -- or "coding," as it was already coming to be called -- by
which truly interesting mathematical operations, and possibly "thinking"
itself, eventually might be simulated by an electronic computer. And
while Turing's first attempt at writing programming languages would be
considered crude by today's standards, his ideas were far more
advanced than the state of the hardware then available.

While his colleagues and the American team scrambled to put together
the most elementary models of electronic digital computers, Turing was
already looking far beyond the clumsy contraptions constructed in the
late forties and early fifties. His public talks and private conversations
indicated a strong belief that the cost of electronic technology would
drop while its power as a medium for computation would increase in
the coming decades. He also believed that the capabilities of these
devices would quickly extend beyond their original purposes.

Programs for doubling numbers or extracting square roots or breaking
codes are handy tools, but Turing was aware that calculation was only
one of the kinds of formal systems that could be imitated by a
computational device. In particular, he saw how the simple "instruction
tables" of his theoretical machines could become elements of a
powerful grammar that the machines could use to modify their own
operations.

One innovation of Turing's stemmed from the fact that computers
based on Boolean logic operate only on input that is in the form of
binary numbers (i.e., numbers expressed in powers of two, using only

two symbols), while humans are used to writing numbers in the
decimal system (in which numbers are expressed in powers of ten,
using ten symbols. Turing was involved in the writing of instruction
tables that automatically converted human-written decimals to
machine-readable binary digits. If basic operations like addition,
multiplication, and decimal-to-binary conversion could be fed to the
machine in terms of instruction tables, Turing saw that it would be
possible to build up heirarchies of such tables. The programmer would
no longer have to worry about writing each and every operational
instruction, step by repetitive step, and would thus be freed to write
programs for more complex operations.

Turing wrote a proposal shortly after the end of the war in which he
discussed both the hardware and "coding" principles of his long-
hypothetical machines. He foresaw that the creation of these instruction
tables would become particularly critical parts of the entire process, for
he recognized that the ultimate capabilities of computers would not
always be strictly limited by engineering considerations, but by
considerations of what was not yet known as "software."

Turing not only anticipated the fact that software engineering would
end up more difficult and time-consuming than hardware engineering,
but anticipated the importance of what came to be known as
"debugging":

Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability. There
will probably be a good deal of work of this kind to be done, for every
known process has got to be translated into instruction table form at some
stage. This work will go on whilst the machine is being built, in order to
avoid some delay between the delivery of the machine and the production
of the results. Delay there must be, due to the virtually invisible snags, for
up to a point it is better to let the snags be there than to spend such time
in design that there are none (how many decades would this course take?).
This process of constructing instruction tables should be very fascinating.
There is no real danger of it ever becoming a drudge, for any processes
that are quite mechanical may be turned over to the machine itself.

Except for the almost equally advanced ideas of a German inventor by
the name of Konrad Zuse, which were long unknown to British and
American scientists, Turing's postwar writings about the logical
complexities and mathematical challenges inherent in the
construction of instruction tables were the first significant steps
in the art and science of computer programming. Turing was
fascinated with the intricacies of creating coded instruction tables, but
he was also interested in what might be done with a truly sophisticated
programming language. His original metamathetical formalism had
stemmed from his attempt to connect the process of human thought to
the structure of formal systems, and Turing was still intrigued by the
possibility that automatic formal systems -- computers -- might one
day emulate aspects of human reasoning.

The most profound questions Turing raised concerning the capabilities
of universal machines were centered around this hypothesized future
ability of computing engines to simulate human thought. If machinery
might someday help in creating its own programming, would

http://www.zib-berlin.de/Prospect/zuse.html

machinery ever be capable, even in principle, of performing
activities that resembled human thought? His 1936 paper was
published in a mathematical journal, but it eventually created the
foundation of a whole new field of investigation beyond the horizons of
mathematics -- computer science. In 1950, Turing published another
article that was to have profound impact; the piece, more simply titled
"Computing Machinery and Intelligence," was published in the
philosophical journal Mind. In relatively few words, using tools no
more esoteric than common sense, and absolutely no
mathematical formulas, Turing provided the boldest
subspecialty of computer science -- the field of artificial
intelligence.

Despite the simplicity of Turing's hypothetical machine, the formal
description in the mathematics journal makes very heavy reading. The
1950 article, however, is worth reading by anyone interested in the
issue of artificial intelligence. The very first sentence still sounds as
direct and provocative as Turing undoubtedly intended it to be: "I
propose to consider the question 'Can machines think?' "

In typical Turing style, he began his consideration of deep AI issues by
describing -- a game! He called this one "The Imitation Game," but
history knows it as the "Turing Test." Let us begin, he wrote, by
putting aside the question of machine intelligence and consider a game
played by three people -- a man, a woman, and an interrogator of
either gender, who is located in a room apart from the other two. The
object of the game is to ask questions of the people in the other room,
and to eventually identify which one is the man and which is the
woman -- on the basis of the answers alone. In order to disguise the
appearance, voice, and other sensory clues from the players, the
interrogation takes place over a teletype.

Turing then asks us to substitute a machine for one of the unknown
players and make a new object for the game: This time, the
interrogator is to guess, on the basis of the teletyped conversation,
which inhabitant of the other room is a human being and which one is
a machine. In describing how such a conversation might go, Turing
quoted a brief "specimen" of such a dialog:

Q: Please write me a sonnet on the subject of the Forth Bridge.
A: Count me out on this one. I could never write poetry.
Q: Add 44957 to 70764.
A: (pause about 30 seconds and then give as answer) 105621.
Q: Do you play chess?
A: Yes.
Q: I have K at my K1, and no other pieces. You only have K at K6
and R at R1. It is your move. What do you play?
A: (After a pause of 15 seconds) R-R8 mate.

Note that if this dialog is with a machine, it is able to do faulty
arithmetic (39457 + 7064 does not equal 105621) and play decent
chess at the same time.

Having established his imitation game as the criterion for determining

whether or not a machine is intelligent, and before proceeding to
consider various objections to the idea of artificial intelligence, Turing
explained his own beliefs in the matter:

. . . I believe that in about fifty years' time it will be possible to program
computers, ... to make them play the imitation game so well that an
average interrogator will not have more than 70 percent chance of making
the right identification after five minutes of questioning. The original
question, "Can machines think?" I believe to be too meaningless to deserve
discussion. Nevertheless I believe that at the end of the century the use of
words and educated opinion will have altered so much that one will be able
to speak of machines thinking without expecting it to be contradicted.

In the rest of the paper, Turing presented, then countered, a number
of principal objections to the possibility of artificial intelligence. The
titles Turing gave these objections reveal his whimsical streak "The
Theological Objection," "The 'Heads in the Sand' Objection," "The
Mathematical Objection," "Lady Lovelace's Objection," "The Argument
from Consciousness," "Arguments from the Continuity in the Nervous
System," "The Argument from Informality of Behavior," and "The
Argument from Extrasensory Perception."

In this paper, Turing made evident his knowledge of his intellectual
antecedents in this field by countering the objection raised by Ada in
her commentary, in which she stated the problem that is still cited by
most people in an argument about the possibility of machine
intelligence: "The Analytical Engine has no pretensions to originate
anything. It can do whatever we know how to order it to perform.
Turing pointed out that Ada might have spoken differently if she had
seen, as he had, evidence that electronic equipment could be made to
exhibit a primitive form of "learning," by which programs would be able
to eventually master tasks that had never been specifically
programmed, but which emerged from trial-and-error techniques that
had been preprogrammed.

Turing's work in computing, mathematics, and other fields was cut
short by his tragic death in June, 1954, at the age of forty-two.
Besides being a genius, Turing was also a homosexual. During the
early 1950s, following the defection of two homosexual spies to the
Soviet Union, Great Britain was an especially harsh environment for
anyone caught engaging in prohibited sexual acts -- especially for
someone who had something even more secret than radar or the
atomic bomb in his head. Turing was arrested and convicted of "gross
indecency," and sentenced to probation on the condition that he submit
to humiliating and physically debilitating female hormone injections.
Turing's war record was still too secret to even be mentioned in his
defense.

Turing put up with the hormones and the public disgrace, and quietly
began to break ground for another cycle of brilliant work in the
mathematical foundations of biology -- work that might have had even
more momentous consequences, if it had been completed, than his
work with computable numbers. For nearly two years after his arrest,
during which time the homophobic and "national security" pressures
grew even stronger, Turing worked with the ironic knowledge that he
was being destroyed by the very government his wartime work had

been instrumental in preserving. In June, 1954, Alan Turing lay down
on his bed, took a bite from an apple, dipped it in cyanide, and bit
again.

Like Ada, Alan Turing's unconventionality was part of his undoing, and
like her he saw the software possibilities that stretched far beyond the
limits of the computing machinery available at the time. Like her, he
died too young.

Other wartime research projects and other brilliant mathematicians
were aware of Turing's work, particularly in the United States, where
scientists were suddenly emerging into the nuclear age as figures of
power. Military-sponsored research-and-development teams on both
sides of the Atlantic continued to work on digital computers of their
own. A few of these independent research efforts grew out of Ballistics
work. Others were connected with the effort to build the first nuclear
fission and fusion bombs.

Over a hundred years had passed between Babbage and Turing. The
computer age might have been delayed for decades longer if
World War II had not provided top-notch engineering teams,
virtually unlimited funds, and the will to apply scientific findings
to real-world problems at the exact point in the history of
mathematics when the theory of computation made computers
possible. While the idea undoubtedly would have resonated in later
minds, the development of the computer was an inevitable engineering
step once Turing explained computation.

When an equally, perhaps even more gifted thinker happened upon the
same ideas Turing had been pursuing, it was no accident of history
that Turing's theoretical insights were converted to workable
machinery. A theory of computation is one very important step -- but
you simply cannot perform very sophisticated computations in a
decently short interval if you are restricted to a box that chugs along a
tape, erasing Os and writing Xs. The next step in both software and
hardware history was precipitated by the thinking of another unique,
probably indispensable figure in the history of programming -- John
von Neumann.

Turing had worked with von Neumann before the war, at Princeton's
Institute for Advanced Study. Von Neumann wanted the young genius
to stay on with him, as his protégé and assistant, but Turing returned
to Cambridge. Von Neumann's profound understanding of the
implications of Turing's work later became a significant factor in the
convergence of different lines of research that led to the invention of
the first digital computers.

It isn't often that the human race produces a polymath like von
Neumann, then sets him to work in the middle of the biggest crisis in
human history. Von Neumann was far more than an embellisher
of Turing's ideas -- he built the bridge between the abstractions
of mathematicians and the practical concerns of the people who
were trying to create the first generation of electronic

computers. He was a key member of the team who designed the
software for the first electronic computer and who created the model
for the physical architecture of computers. He also added elegance and
power to Turing's first steps towards creating a true programming
language.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Four:
Johnny Builds Bombs
and Johnny Builds
Brains

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/texts/tft/12.htm
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Four:
Johnny Builds bombs and Johnny Builds
Brains
If you asked ten thousand people to name the most influential thinker of
the twentieth century, it is likely that not one of them would nominate
John von Neumann. Few would even recognize his name. Despite his
obscurity outside the communities of mathematicians and computer
theorists, his thoughts had an incalculable impact on human destiny. He
died in 1957, but the fate of the human race still depends on how we

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

and our descendants decide to use the technologies von Neumann's
extraordinary mind made possible.

At the end of his life he was an American, and a power behind the
scenes of American scientific policy and foreign policy. But that was
only the last of several equally distinguished identities in different
countries and fields of thought. Janos Neumann, known as "Jansci,"
was a prodigious young chemical engineer turned mathematician and
logician in Hungary in the early 1920s. Johann von Neumann was one
of the elite quantum physics revolutionaries in Gottingen, Germany, in
the late twenties. And from 1933 until his death, he was John von
Neumann of Princeton, New Jersey; Los Alamos, New Mexico; and
Washington, D.C., known to professors and Presidents as "Johnny."

Ada and Babbage could only dream of the day their device could be put
to work. Turing was a tragic victim of political events before he could
get his hands on a computer worth the name. Johnny, however, not
only managed to get his machines built and use them to create the
first working principles of software -- but he also ended up telling his
government how to use the new technology. He was responsible for
much more than the first boost in accelerating American effort to
develop computer technology.

A combination of many different scientific and political developments
led to the invention of ENIAC. Electronic tube technology, Boolean
logic, Turing-type computation, Babbage-Lovelace programming, and
feedback-control theories were brought together because of the War
Department's insatiable hunger for raw calculating power. John von
Neumann was the only man who not only knew enough about
the scientific issues but moved comfortably enough in the
societies of Princeton and Los Alamos and Washington to grasp
the threads and weave them together in an elegant and
powerful design.

Von Neumann was a very important, probably indispensable, member
of the Manhattan Project scientific team. Oppenheimer, Fermi, Teller,
Bohr, Lawrence, and the other members of the most gifted scientific
gathering of minds in history were as awed by Johnny's intellect as
anyone else who ever met him. More impressively, they were as reliant
on his mathematical judgment as anyone else. In that galactic cluster
of world-class physicists, chemists, mathematicians, and engineers, it
was a rare tribute that von Neumann was put in charge of the
mathematical calculations upon which all their theories -- and the
functioning of their "gadget" -- would depend.

As if his significant contributions to the development of the first nuclear
weapons and the first computers were not enough for one man, he was
also one of the original logicians who had posed the questions that
Turing and Kurt Gödel answered in the 1930s. He was a cofounder of
the modern science of game theory (picking up where Babbage left
off), one of the founders of operational research (also, curiously,
advancing a field first explored by Babbage), an active participant in
the creation of quantum physics, one of the first people to suggest

http://www.needham.mec.edu/NPS_Web_docs/High_School/cur/mp/index.html
jhopo
Highlight

analogies and differences between computer circuits and brain
processes, and one of the first scientists since Turing to examine the
relationship between the mathematics of code-making and the mystery
of biological reproduction.

Von Neumann ended up a key policy-maker in the fields of
nuclear power, nuclear weapons, and intercontinental ballistic
weaponry: he was the director of the Atomic Energy Commission and
an influential member of the ICBM Committee. Generals and senators
were lucky to get an appointment. Even when he was dying, the most
powerful men in the world gathered around for a final consultation.
According to Admiral Lewis Strauss, former chairman of the Atomic
Energy commission: "On one dramatic occasion near the end, there
was a meeting at Walter Reed Hospital where, gathered around his
bedside and attentive to his last words of advice and wisdom, were the
secretary of Defense and his Deputies, the Secretaries of the Army,
Navy, and Air Force, and all the military Chiefs of Staff."

John von Neumann's political views, undoubtedly rooted in his upper-
class Hungarian past, were unequivocal and extreme, according to the
public record and his biographers. He not only used his scientific
expertise to hasten and accelerate the development of nuclear
weapons and computer-guided missiles, but counseled military
and political leaders to think about using these new American
inventions against the USSR in a "preventive war." (In an article
in Life magazine, published shortly after he died, von Neumann was
quoted as saying: "If you say why not bomb them tomorrow, I say,
why not today. If you say at five o'clock, I say why not one o'clock.")

In contrast to Turing, whom he knew from Turing's prewar stay at
Princeton and from their wartime work, von Neumann was a
sophisticated, worldly, and gregarious fellow, famous for the weekly
cocktail parties he and his wife hosted during his tenure at Princeton's
Institute for Advanced Study and up on the Mesa at Los Alamos. He
had a substantial private income and an additional $10,000 a year from
the Institute. He was widely known to have a huge repertoire of jokes
in several languages, a vast knowledge of risqué limericks, and a
casual manner of driving so recklessly that he demolished automobiles
at regular intervals, always managing to emerge miraculously
unscathed.

Despite his apparently charmed existence, von Neumann, like Ada
Lovelace and Alan Turing, died relatively young. Lovelace died of
cancer at thirty-six, Turing of cyanide at forty-two, and von Neumann
of cancer at fifty-three. Like many other Los Alamos veterans, he may
have been a victim of exposure to radiation during the early nuclear
bomb tests. His death came as a shock to all who knew him as a vital,
lively, peripatetic, seemingly invulnerable individual. Stanislaw Ulam,
von Neumann's mathematical colleague and lifelong friend, in a
memorial to Johnny published in a mathematical journal shortly after
von Neumann's death, described his physical presence in loving
detail:

Johnny's friends remember him in his characteristic poses: standing before
a blackboard or discussing problems at home. Somehow his gesture, smile,
and the expression of the eyes always reflected the thought or the nature
of the problem under discussion. He was of middle size, quite slim as a
young man, then increasingly corpulent; moving in small steps with
considerable random acceleration, but never with great speed. A smile
flashed on his face whenever a problem exhibited features of a logical or
mathematical paradox. Quite independently of his liking for abstract wit, he
had a strong appreciation (one might almost say a hunger) for the more
earthy type of comedy and humor.

Everyone who knew him remembers to point out two things about von
Neumann -- how charming and personable he was, no matter what
language he was speaking, and how much more intelligent that other
human beings he always seemed to be, even in a crowd of near-
geniuses. Among his friends, the standard joke about Johnny was
that he wasn't actually human but was as skilled at imitating
human beings as he was at everything else.

Born into an upper-class Hungarian Jewish family, Jansci was fluent in
five or six languages before the age of ten, and he once told his
collaborator Herman Goldstine that at age six he and his father often
joked with each other in classical Greek. It was well known that he
never forgot anything once he read it, and his ability to perform
lightning fast calculations was legendary.

One night in the middle of the summer of 1944, von Neumann
encountered by happenstance a mathematician of past acquaintance in
the Aberdeen, Maryland, train station. History might have been far
different if one of their trains had been scheduled a few minutes
earlier. That accidental meeting in Aberdeen presented von Neumann
with a nearly completed approach to a problem the strategic
significance of which he was uniquely equipped to understand, the
details of which were complex and profound enough to attract his
intellectual curiosity, the successful completion of which could be
hastened by the use of his political clout.

Lieutenant Herman Goldstine, then associated with the U.S. Army
Ordnance Ballistic Laboratory at Aberdeen, Maryland, didn't know
anything about the other projects von Neumann was juggling at that
time. But he knew that von Neumann's security clearance was miles
above his and that he was a member of the Scientific Advisory
Committee at the Ballistic Research Laboratory. So Goldstine happened
to mention that an Army project at the Moore School of Engineering
was soon to produce a device capable of performing mathematical
calculations at phenomenal speeds.

Years later, Goldstine remembered that he was understandably nervous
upon meeting the world-famous mathematician on the platform at the
Aberdeen station. Goldstine recalled:

Fortunately for me, von Neumann was a warm friendly person who did his
best to make people feel relaxed in his presence. The conversation soon
turned to my work. When it became clear to von Neumann that I was
concerned with the development of an electronic computer capable of 333
multiplications per second, the whole atmosphere of our conversation
changed from one of relaxed good humor to one more like the oral

jhopo
Highlight

examination for the doctor's degree in mathematics.

Because he had all-important reasons for wanting a fast automatic
calculator, von Neumann asked for a demonstration. At the Moore
School of Engineering, he met the gadget's inventors, Mauchly and
Eckert, and the next years saw Johnny adding Aberdeen as a regular
stop on his Princeton-D.C.-Los Alamos shuttle. Like everything else he
turned his mind to, von Neumann immediately seemed to see more
clearly than anyone else the future potential of what was then only a
crude prototype. While the other principal creators of the first electronic
computer were either mathematicians or electrical engineers, von
Neumann was also a superb logician, which enabled him to understand
what few others did -- that these gadgets were in a class quite far
beyond that of superfast calculating engines.

From those early meetings in 1944 to the eras of ENIAC, EDVAC,
UNIVAC, MANIAC, and (yes) JOHNNIAC, the problem of assigning
legal and historical credit to the inventors of the first electronic
digital computers becomes a tangled affair in which easy explanations
are impossible and many conflicts are still unresolved. Goldstine -- the
other man on the platform with von Neumann -- had his own version of
the key events in early computer history. Mauchly and Eckert had a
distinctly different point of view. There was a tale of Stibitz at Bell
Labs. IBM's Thomas Watson, Senior, had yet another story. And a man
in Iowa named Atanasoff eventually had the unexpected last laugh in a
courtroom in 1973.

Monumental court cases have been fought over the issue of assigning
credit for the invention of the modern computer, and even the legal
decisions have been somewhat murky. Certainly it was a field in which
a few people all over the world, working independently, reached similar
conclusions. In the case of the ENIAC team, it was a case of several
determined minds working together.

It isn't hard to envision von Neumann coming onto the scene after
others have worked for years on the considerable engineering problems
involved in building ENIAC (Electronic Numerical Integrator and
Calculator), then dominating the voice of the group when they
articulated their discoveries, not out of self-aggrandizement, but
because he undoubtedly had the most elegant way of stating the
conclusions that the group had arrived at, working in concert. Because
of von Neumann's prominence in other fields, and the way his charm
worked on journalists as well as generals, he was often described by
the mass media as the sole inventor of key concepts like the all-
important "stored program" -- a credit he never claimed himself.

Although the matter of assigning credit for the earliest computer
hardware is a tricky business, there is no denying von Neumann's
central role in the history of software. His contributions to the science
of computation in the late forties and early fifties were preceded by
even earlier theoretical work that led to the notion of computation. He
was one of the principal participants in both of the lines of thought that
converged into the construction of ENIAC -- mathematical logic and
ballistics.

http://www.intercom.net/local/shore_journal/joc10225.html
http://www.upenn.edu/AR/penninfo-new/ENIAC_Papers.html
http://www.upenn.edu/AR/penninfo-new/ENIAC_Papers.html
jhopo
Highlight

John von Neumann's role in the invention of computation began nearly
twenty years before the ENIAC project. In the late 1920s, between his
major contributions to quantum physics, logic, and game theory, young
Johann von Neumann of Göttingen was one of the principal players in
the international game of mathematical riddles that started with Boole
seventy years prior and led to Turing's invention of the universal
machine a decade later.

The impending collision of philosophy and mathematics that was
becoming evident at the end of the nineteenth century made
mathematicians extremely uncomfortable. Slippery metaphysical
concepts associated with human thought might have appealed to minds
like Boole's or Turing's. But to David Hilbert of Göttingen and others of
the early 1900s, such vagueness was a grave danger to the future of
an enterprise that intended to reduce all scientific laws to mathematical
equations.

The logical and metamathematical foundations of more "pure" forms of
mathematics, Hilbert insisted, could only be stated clearly in terms of
numerical problems and precisely defined symbols and rules and
operations. This was the doctrine of formalism that later spurred Turing
to make his astonishing discovery about the capabilities of machines.
Johann von Neumann, a student of Hilbert's, was one of the stars of
the formalists. In itself, von Neumann's metamathematical achievement
was remarkable. His work in formalism, however, was only part of
what von Neumann achieved in several disparate fields, all in the same
dazzling year.

In 1927, at the age of twenty-four, von Neumann published five
papers that were instant hits in the academic world, and which
still stand as monuments in three separate fields of thought. It
was one of the most remarkable interdisciplinary triple plays in history.
Three of his 1927 masterpieces were critical to the field of quantum
physics. Another paper established the new field of game theory. The
paper most directly to the future of computation was about the
relationship between formal logic systems and the limits of
mathematics.

In his last 1927 paper, von Neumann demonstrated the necessity of
proving that all mathematics was consistent, a critically important step
toward establishing the theoretical basis for computation (although
nobody yet knew that). This led, one year later, to a paper published
by Hilbert that listed three unanswered questions about mathematics
that he and von Neumann had determined to be the most important
questions facing logicians and mathematics of the modern era.

The first of these questions asked whether or not mathematics was
complete. Completeness, in the technical sense used by
mathematicians, means that every true mathematical statement can be
proven (i.e., is the last line of a valid proof).

The second question, the one that most concerned von Neumann,
asked whether mathematics (or any other formal system) was
consistent. Consistency in the technical sense means that there is no
valid sequence of allowable steps (or "moves" or "states") that could

prove an untrue statement to be true. If arithmetic was a consistent
system, there would never be a way to prove that 1 + 1 = 3.

The third question, the one that opened the side door to computation,
asked whether or not mathematics was decidable. Decidability means
that there is some definite method that is guaranteed to correctly
determine whether an assertion is provable.

It didn't take long for a shocking answer to emerge in response to the
first Hilbert-von Neumann question. In 1930, yet another young
mathematician, Kurt Gödel, showed that arithmetic cannot be
complete, because there will always be at least one true assertion that
cannot be proved. In the course of demonstrating this, Gödel crossed a
crucial threshold between logic and mathematics when he showed that
any formal system that is as rich as the number system (i.e., contains
the mathematical operators + and =) can be expressed in terms of
arithmetic. This means that no matter how complicated mathematics
(or any other equally powerful formal system) becomes, it can always
be expressed in terms of operations to be performed on numbers, and
the parts of the system (whether or not they are inherently numerical)
can be manipulated by rules of counting and comparing.

Von Neumann's and Hilbert's third question about the decidability of
mathematics led Turing to his 1936 breakthrough. The "definite
method" (of determining whether a mathematical assertion is provable)
that was demanded by the decidability question was formulated by
Alan Turing as a machine that could operate in definite steps on
statements encoded as symbols on tape. Gödel had shown how
numbers could represent the operations of formal system, and Turing
showed how the formal system could be described numerically to a
machine equipped to decode such a description (e.g., translate the
system's rules into the form "find a number n, such that . . . ", "n"
being expressible as a string of ones and zeroes).

All of these questions were terribly important at the time they were
formulated -- to the few dozen people around the world who were
equipped to understand their significance. But in 1930, the rest of the
population had more important things to worry about that the
hypothetical machines of the metamathematicians. Even those who
understood that universal machines could in fact be built were in no
position to begin such a task. Making a digital computer was an
engineering project that would require the kind of support that
only a national government could afford.

John von Neumann was at the Institute for Advanced Study at
Princeton by the time young Gödel and Turing came along. Although he
was keenly aware of the latest developments in the "foundation crisis
of mathematics" he had helped initiate in the late 1920s, von
Neumann's restless intellect was attacking half a dozen new problems
by the early 1930s. To Johnny, still in his twenties, the most important
thing in life was to find "interesting problems."

In particular, he was interested in mathematical questions involving the
phenomenon of turbulence, and the dynamics of explosions and
implosions happened to be one area where such questions could be

http://www.ias.edu/
http://www.ias.edu/
jhopo
Highlight

applied. He was also interested in new mathematical methods for
modeling complex phenomena like global weather patterns or the
passage of radiation through matter -- methods that were powerful but
required such enormous numbers of calculations that future progress in
the field was severely limited by the human inability to calculate the
results of the most interesting equations in a reasonable length of time.

Von Neumann seemed to have a kind of "Midas Touch." The
problems he tackled, no matter how abstruse and apparently obscure
they might have seemed at the time, had a way of becoming very
important a decade or two later. For example, he wrote a paper in the
1920s on the mathematics underlying economic strategies. A quarter of
a century later it turned out to be a perfect solution to the problem of
how airplanes should search for submarines (as well as one of the first
triumphs of "operational research," one of the fields pioneered by
Babbage).

By the 1940s, von Neumann's expertise in the mathematics of
hydrodynamic turbulence and the management of very large
calculations took on unexpected importance because these two
specialties were especially applicable to a new kind of explosion that
was being cooked up by some of the old gang from Göttingen, now
gathered in New Mexico. The designers of the first fission bomb knew
that hellish mathematical problems in both areas had to be solved
before any of the elegant equations of quantum physics could be
transformed into the fireball of a nuclear detonation. As von Neumann
already suspected, the mathematical work involved in designing nuclear
and thermonuclear weapons created an avalanche of calculations.

The calculating power needed in the quest for thermonuclear weaponry
ended up being one of the highest-priority uses for ENIAC -- top-secret
calculations for Los Alamos were the subject of the first official
programs run on the device when it became operational -- although
the reason the electronic calculator had been commissioned in
the first place was to generate the mathematical tables needed
for properly aiming conventional artillery.

The ENIAC project was started under the auspices of the Army Ballistic
Research Laboratory. Herman Goldstine, a historian of computation as
well as one of the key participants, took the trouble to point out that
the word ballistics is derived from the Latin ballista, the name of a
large device for hurling missiles. Ballistics in the modern sense is the
mathematical science of predicting the path of a projectile between the
time it is launched and the moment it hits the target. Complex
equations concerning moving bodies are complicated further by the
adjustments necessary for winds of different velocities and for the
variations in air resistance encountered by projectiles fired from very
large guns as they travel through the atmosphere. The results of all
possible distance, altitude, and weather calculations for guns of each
specific size and muzzle velocity are given in "firing tables" which
artillerymen consult as they set up a shot.

The application of mass-production techniques to weapons meant that
new types of guns and shells were coming along at an unprecedented

jhopo
Highlight

pace, making the ongoing production of firing tables no easy task.
During World War I, such calculations were done by humans who were
called "computers." But even then it was clear that new methods of
organizing these large-scale calculations, and new kinds of mechanical
calculators to help the work of human computers, would be an
increasingly important part of modern warfare.

In 1918 the Ballistics Branch of the Chief of Ordnance set up a special
mathematical section at the Aberdeen Proving Ground in Maryland. One
of the early recruits was the young Norbert Wiener, who was to feature
prominently in another research tributary of the mainstream of ballistic
technology -- the automatic control of antiaircraft guns -- and who was
later to become one of the creators of the new computer-related
discipline of cybernetics.

In the 1930s, both the Aberdeen laboratory and an associated group at
the University of Pennsylvania's Moore School of Engineering obtained
models of the automatic analog computer constructed by Vannevar
Bush at MIT, a gigantic mechanical device known as the "differential
analyzer." It was a marvelous aid to calculation, but it was far from
being a digital computer, in either its design or its performance.

With the aid of these machines, the work of performing ballistic
calculations was somewhat relieved. Before World War II, the machines
were still second to the main resource -- mathematics professors
emeriti at the Moore School, who performed the calculations by hand,
with the aid of hand-cranked mechanical calculators. Shades of
Babbage's Cornish clergymen!

When war broke out, it was obvious that the institutions in charge of
producing ballistic calculations for several armed services needed
expert help. It was for this reason that a mobilized mathematician,
Lieutenant Herman Goldstine, reported for duty at Aberdeen in August,
1942, and was assigned the task of streamlining ballistic computations.
He soon found the Moore School facilities inadequate, and started to
expand the staff of human "computers" by adding a large number of
young women recruited from the Women's Army Corps to the small
cadre of elderly ex-professors.

Goldstine's wife, Adele, herself a mathematician who was to play a
prominent role in the programming of early computers (she and six
other women were eventually assigned the task of programming the
ENIAC), became involved with recruiting and teaching new staff
members. Von Neumann's wife, Klara, performed a similar role at Los
Alamos, both before and after electronic computing machines became
available. The tradition of using women for such work was widespread
-- the equivalent roles in Britain's code-breaking efforts were played by
hundreds of skilled calculators whom Turing and his colleagues called
"girls" as well as "computers."

The expansion of the human computing staff at Aberdeen to nearly two
hundred people, mostly WACs, was a stopgap measure. The calculation
of firing tables was already out of hand. As soon as a new kind of gun,
fuse, or shell became available for combat, a new table had to be
calculated. The final product was either printed in a booklet that

gunners kept in their pockets, or was mechanically encoded in special
aiming apparatus called automata. (An entirely different mathematical
research effort by Julian Bigelow, Warren Weaver, and Norbert Wiener
was to concentrate on the characteristics of these automatic aiming
machines.)

The answer to the firing table dilemma, as Goldstine was one of the
first to recognize, was to commission the invention of an entirely new
kind of mechanical calculating aid. The Vannevar Bush calculators were
no longer the most efficient calculating devices. Faster machines, built
on different principles, had been built by Dr. Howard Aiken and an IBM
team at Harvard, and by a group led by a man named George Stibitz at
Bell laboratories. But Goldstine knew that what they really needed at
Aberdeen and the Moore School was an automatic calculator that was
hundreds, even thousands of times faster than the fastest existing
machines.

Such dreams would have been akin to an Air Force officer wishing for a
ten-thousand-mile-per-hour airplane, except for the fact that another
new technology, one that only a few people even thought of applying
to mathematical problems, looked as if it might make such a machine
possible in theory, if only questionably probable in execution. Research
in the young field of electronics had been uncovering all sorts of
marvelous properties of the vacuum tube. Over in Great Britain, the
whiz kids at Bletchley Park were using such devices in Colossus, their
not-quite-computational code-breaking machine.

Until the war, electronic vacuum tubes had been used almost
exclusively as amplifiers. But they could also be used as very fast
switches. Since the rapid execution of a large number of on/off
impulses is the hallmark of digital computation, and vacuum
tubes could switch on and off as fast as a million times a second,
electronic switching (as opposed to the mechanical switching of
Vannevar Bush's machine) was an unbelievably good candidate for the
key component of an ultrafast computing machine.

By 1943, unknown to Goldstine and almost all of his superiors,
another, much higher-ranking scientist was also searching for an
ultrafast computing machine. Goldstine beat the other fellow to it.
Goldstine found Mauchly and Eckert in 1942. John von Neumann, and
chance, found Goldstine in 1944.

John W. Mauchly and J. Presper Eckert have been properly credited
with the invention of ENIAC, but before they implemented the key
ideas of electronic digital computing machines, a man named Atanasoff
in Iowa, in the 1930s, built small, crude, but functioning prototypes of
electronic calculating machines. His name has not been as widely
known, and his fortunes turned out differently from those of other
pioneers when computers grew from an exotic newborn technology to a
powerful infant industry. But in 1973 a Unites Stated district court
ruled that John Vincent Atanasoff invented the electronic digital
computer.

It was a complicated decision, reached after years of litigation, and was
not as clear-cut as it might have been if both did not have such strong

http://www.library.upenn.edu/special/gallery/mauchly/jwmintro.html

cases. The core of the dispute centered around original work Atanasoff
did in the 1930s, and the influence that his work later had on John
Mauchly's design of ENIAC. Like the Hollerith-Billings story of the
invention of punched-card data processing, simple explanations of
where one man's ideas left off and another's began are difficult to
reconstruct at best.

Atanasoff was the last of the lone inventors in the field of
computation; after him, such projects were too complicated for
anything less than a team effort. Like Boole, Atanasoff was the
recipient of one of those sudden inspirations that provided the solution
to a problem he had been grappling with for years. A theoretical
physicist teaching at Iowa State in the early 1930s, he came up against
the same obstacle faced by other mathematicians and physicists of his
era. The approaches to the most interesting ideas were blocked by the
problems of performing large numbers of complex calculations.

By 1935, Atanasoff was in hot pursuit of a scheme to mechanize
calculation. He was aware of Babbage's ideas, but he was an electronic
hobbyist as well as a physicist, and entire technologies that didn't exist
in Babbage's time were now showing great promise. Atanasoff was
gradually convinced that an electronic computing machine was a good
bet to pursue, but he had no idea how to go about designing one, and
he wasn't sure how to design a machine without working out a method
of programming it. In the late 1970s, Atanasoff told writer Katherine
Fishman:

I commenced to go into torture. For the next two years my life was hard. I
thought and thought about this. Every evening I would go into my office in
the physics building. One night in the winter of 1937 my whole body was in
torment from trying to solve the problems of the machine. I got in my car
and drove at high speeds for a long while so I could control my emotions.
It was my habit to do this for a few miles: I could gain control of myself by
concentrating on driving. But that night I was excessively tormented, and I
kept on going until I had crossed the Mississippi River into Illinois and was
189 miles from where I started. I knew I had to quit; I saw a light, which
turned out to be a roadhouse, and I went in. It was probably zero outside,
and I remember hanging up my heavy coat; I started to drink and
commenced to warm up and realized that I had control of myself.

Nearly forty years later, when he testified in the patent case concerning
the invention of the electronic computer, Atanasoff recalled that he
decided upon several design elements and principles that night in the
roadhouse -- including a binary system for encoding input and
electronic tube technology for switching -- that would transform his
dream of an electronic calculator into a practical plan.

The state of each inventor's mind at the time of their discussions in
1940 and 1941 was the crux of the legal and historical conflict. There is
no dispute that John Mauchly had also devoted years of thought to the
idea of automated calculation. Thirty-three years old when he met
Atanasoff, Mauchly had worked his way through Johns Hopkins as a
research assistant, which gave him extensive experience with
procedures that involve detailed measurement and calculation. In
1933, as head of the physics department at Ursinus College near
Philadelphia, he began to perform research in atmospheric electricity.

Mauchly was particularly interested in the long-disputed theory about
the effect of sunspots on the earth's weather. There was no obvious
connection between these huge storms on the sun and terrestrial
weather conditions, but that did not prove that such a connection did
not exist. In 1936, Mauchly arranged to have many parts of the
government's voluminous meteorological records shipped back to his
office at Ursinus. He intended to apply modern statistical analysis to
the weather data in an attempt to correlate them with records of
sunspot activity, hoping that this probe would reveal the previously
undetected pattern.

As other mathematical meteorologists like von Neumann were also
quickly discovering, Mauchly found that any calculations involving data
based on weather quickly grew so complicated that it would take a
lifetime to calculate all the equations generated from even the shortest
periods of observation. So he found himself doing the same thing that
the ballistics experts did -- hiring a lot of people with adding machines.
A Depression-era agency, the National Youth Administration, helped
Mauchly pay students fifty cents an hour to tabulate his weather data
with hand calculators. Mauchly planned to obtain punched-card
machines, once he got his crew to tackle the first part of the data. But
when he watched a demonstration of the world's most advanced
punched-card tabulator at the 1939 World's Fair, he realized that even
scores of such machines in the hands of trained operators might take
another decade to go through the weather data.

In 1939 and 1940, Mauchly read in scientific journals about a new
measuring and counting system developed to assist cosmic-ray
research. The part of the system that caught his eye was the fact that
this new device, using electronic circuits, could count cosmic rays far
faster than a dozen of the fasted punched-card tabulators. Cosmic rays
can be detected at the rate of thousands per second, but all previous
recorders failed to keep pace beyond 500 times a second. Mauchly
tried making a few electronic circuits for himself, and he began to see
a way that they could be used for computation.

Mauchly took note of one circuit in particular that was developed by
the cosmic-ray researchers -- the coincidence circuit, in which a switch
would be closed only when several signals arrived at exactly the same
time, thus, in effect, rendering a decision. Would a machine capable of
making electronic logical operations be possible via some variation of
this circuit? Experimenting with his own vacuum-tube circuits, Mauchly
speculated that there might also exist circuits used in other kinds of
instruments that would enable him to build a machine to add, subtract,
multiply, and divide. At this point his speculations were more grandiose
than his hand-wired prototypes, but the clues he had obtained from the
cosmic-ray researchers were enough to put Mauchly's weather-
predicting machines on a collision course with a certain device the U.S.
Army had in mind, one that had nothing to do with sunspots or the
weather.

Mauchly brought a small analog device to the AAAS meeting where he
met Atanasoff, and in June, 1941, he hitched a ride to visit Atanasoff in
Ames, Iowa. Atanasoff demonstrated the ABC, Mauchly stayed for five
days, and thirty-two years later a court decided that Mauchly's later

invention of the ENIAC relied upon key ideas of Atanasoff's that were
transferred from mind to mind those five days in June.

The 1973 legal decision (Honeywell versus Sperry Rand, U.S. District
Court, District of Minnesota, Fourth Division) did not state that Mauchly
stole anything, but did restore partial credit for the invention of the
electronic computer to a man whose name had been nearly forgotten in
all the publicity and honors heaped upon Mauchly and Eckert. After the
ruling, Mauchly said: "I feel I got nothing out of that visit to Atanasoff
except the royal shaft later." On Mauchly's behalf, it must be noted
that nobody has disputed the fact that the sheer scale and engineering
audacity of ENIAC was far beyond the ABC, and that Mauchly was
indeed on the right track at least as early as Atanasoff.

Part of the reason for ENIAC's success and ABC's obscurity must be
attributed to the accidents of history. Legal issues aside, the historical
momentum shifted to Mauchly later in the summer of 1941, when he
signed up for an Army-sponsored electronics course at the Moore
School of Engineering. His instructor, J. Presper Eckert, was an
exceptionally bright Philadelphia blueblood twelve years younger than
Mauchly. When Eckert, the electronics wizard, learned of Mauchly's plan
to automate large-scale numerical calculations, a critical mass of idea-
power was reached. They were in exactly the right place at the right
time to cook up such an ambitious project.

Not long after thirty-four-year-old John Mauchly and twenty-two-year-
old Pres Eckert started to sketch out a plan for an electronic computer,
they became acquainted with Lieutenant Herman Goldstine, both as a
mathematician and as a liaison officer between the Moore School and
the Ballistic Research Laboratory. By the time he met them, Goldstine
was sufficiently frustrated by the lack of ballistic computing
power that he was receptive to even a science-fiction story like
the one presented to him by these two whiz kids.

As wild as it sounded as an engineering feat, Goldstine knew that an
electronic device such as the one Mauchly and Eckert described to him
had the potential to perform ballistic calculations over 1000 times
faster than the best existing machine, the Aiken-IBM-Harvard-Navy
device called the Mark I. But it would cost a lot of money to find out if
they were right. Atanasoff and Berry built their prototype for a total of
$6500. These boys would need hundreds of thousands of dollars to
lash together something so complicated and delicate that most
electrical engineers of the time would swear it could never work.

Goldstine later explained the risks associated with attempting the
proposed electronic calculator project:

. . . we should realize that the proposed machine turned out to contain
over 17,000 tubes of 16 different types operating at a fundamental clock

rate of 100,000 pulses per second. . . . once every 10
microseconds an error would occur if a single one of
the 17,000 tubes operated incorrectly; this means that
in a single second there were 1.7 billion . . . chances of
a failure occurring . . . Man has never made an

http://www.scl.ameslab.gov/ABC/

instrument capable of operating with this degree of
fidelity or reliability, and this is why the undertaking
was so risky a one and the accomplishment so great.

The two young would-be computer inventors at the Moore School, the
mathematician-turned-lieutenant who found them, and their audacious
plan for cutting through the calculation problem by creating the world's
most complicated machine were the subject of a high-level meeting on
April 9, 1943. Attending was one of the original founders of the
military's mathematical research effort and President of the Institute
for Advanced Study at Princeton, Oswald Veblen, as well as Colonel
Leslie Simon, director of the Ballistic Research Laboratory, and
Goldstine.

The moment when the United States War Department entered the age-
old quest for a computing machine, and thus made the outcome
inevitable, was recalled by Goldstine when he wrote, nearly thirty years
later, that Veblen, "after listening for a short while to my presentation
and teetering on the back legs of his chair brought the chair down with
a crash, arose, and said, 'Simon, give Goldstine the money.'" They got
their money -- eventually as much as $400,000 -- and started building
their machine.

ENIAC was monstrous -- 100 feet long, 10 feet high, 3 feet
deep, weighing 30 tons -- and hot enough to keep the room
temperature up toward 120 degrees F while it shunted
multivariable differential equations through its more than
17,000 tubes, 70,000 resistors, 10,000 capacitors, and 6,000
hand-set switches. It used an enormous amount of power -- the
apocryphal story is that the lights of Philadelphia dimmed when
it was plugged in.

When it was finally completed, ENIAC was too late to use in the war,
but it certainly delivered what its inventors had promised: a ballistic
calculation that would have taken twenty hours for a skilled human
calculator could be accomplished by the machine in less than thirty
seconds. For the first time, the trajectory of a shell could be calculated
in less time than it took an actual shell to travel to its target. But the
firing tables were no longer the biggest boom on the block by the time
ENIAC was completed. The first problem run on the machine, late in
the winter of 1945, was a trial calculation for the hydrogen bomb then
being designed.

After his first accidental meeting with Goldstine at Aberdeen, and the
demonstration of a prototype ENIAC soon afterward, von Neumann
joined the Moore School project as a special consultant. Johnny's
genius for formal, systematic, logical thinking was applied to the logical
properties of this huge maze of electronic circuits. The engineering
problems were still formidable, but it was becoming clear that the
nonphysical component, the subtleties of setting up the machine's
operations -- the coding, as they began to call it -- was equally difficult
and important.

Until the transistor came along a few years later, ENIAC would
represent the physical upper limit of what could be done with a large
number of high-speed switches. In 1945, the most promising approach
to greater computing power was in improving the logical structure of
the machine. And von Neumann was probably the one man west of
Bletchley Park equipped to understand the logical attributes of the first
digital computer.

Part of the reason ENIAC was able to operate so fast was that the
routes followed by the electronic impulses were wired into the machine.
This electronic routing was the materialization of the machine's
instructions for transforming the input data into the solution. Many
different kinds of equations could be solved, and the performance of a
calculation could be altered by the outcome of subproblems, but
ENIAC was nowhere near as flexible as Babbage's Analytical
Engine, which could be reprogrammed to solve a different set of
equations, not by altering the machine itself, but by altering the
sequence of input cards.

What Mauchly and Eckert gained in calculating power and
speed, they paid for in overall flexibility. The gargantuan
electronic machine had to be set up for solving each separate
problem by changing the configuration of a huge telephone-like
switchboard, a procedure that could take days. The origins of the
device as a ballistics project were partially responsible for this
inflexibility. It was not the intention of the Moore School engineers to
build a universal machine. Their contract quite clearly specified that
they create an altogether new kind of trajectory calculator.

Especially after von Neumann joined the team, they realized that what
they were constructing would not only become the ultimate
mathematical calculator, but the first, necessarily imperfect prototype
of a whole new category of machine. Before ENIAC was completed, its
designers were already planning a successor. Von Neumann, especially,
began to realize that what they were talking about was a general-
purpose machine, one that was by its nature particularly well suited to
function as an extension of the human mind.

If one thing was sacred to Johnny, it was the power of human thought
to penetrate the mysteries of the universe, and the will of human
beings to apply that knowledge to practical ends. He had other things
on his own mind at the time -- from the secrets of H-bomb design to
the structure of logic machines -- but he appeared to be most keen on
the idea that these devices might evolve into some kind of intellectual
extension. How much more might a thinker like himself accomplish with
the aid of such a machine? One biographer put it this way:

Von Neumann's enthusiasm in 1944 and 1945 had first been generated by
the challenge of improving the general-purpose computer. He had been a
proponent of using the latest in computing machines in the atomic bomb
project, but he realized that for the impending hydrogen bomb project still
better and faster machines were needed. In the theoretical level he was
intrigued by the fact that there appeared to be organizational parallels
between the brain and computers and that these parallels might lead to

formal-logic theories encompassing both computers and brains; moreover,
the logical theories would constitute interesting abstract logics in their own
right. He was cautious in assuming similarity between a computer and the
awesome functioning of the human brain, especially as in 1944 he had little

preparation in physiology. Rather he regarded the computer
as a technical device functioning as an extension of its
user; it would lead to an aggrandizement of the human
brain, and von Neumann wanted to push this
aggrandizement as far and as fast as possible.

There is no dispute that Mauchly, Eckert, Goldstine, and Von Neumann
worked together as a team during this crucial gestation period of
computer technology. The team split up in 1946, however, so the
matter of accrediting specific ideas has become a sticky one.
Memoranda were written, as they are on any project, without the least
expectation that years later they would be regarded as historical or
legal documents. Technology was moving too fast for the traditional
process of peer review and publication: the two most important
documents from these early days were titled "First Draft . . ." and
"Preliminary Report . . ."

By the time they got around to sketching the design for the next
electronic computer, the four main ENIAC designers had agreed that
the goal was to design a machine that would use the same hardware
technology in a more efficient way. The next step, the invention of
stored programming, is where the accreditation controversy comes in.
At the end of June, 1945, the ENIAC team prepared a proposal in the
form of a "First Draft of a Report on the Electronic Discrete Variable
Calculator" (EDVAC). It was signed by von Neumann, but reflected the
conclusions of the group. Goldstine later said of this: "It has been said
by some that von Neumann did not give credits in his First Draft to
others. The reason for this was that the document was intended by von
Neumann as a working paper for use in clarifying and coordinating the
thinking of the group and was not intended for publication." (Mauchly
and Eckert, however, took a less benign view of von Neumann's
intentions.) The most significant innovations articulated in this paper
involved the logical aspects of coding, as well as dealing with the
engineering of the physical device that was to follow the coded
instructions.

Creating the coded instructions for a new computation on ENIAC was
nowhere near as time consuming as carrying out the calculation by
hand. Once the code for the instructions needed to carry out the
calculation had been drawn up, all that had to be done to perform the
computation on any set of input data was to properly configure the
machine to perform the instructions. The calculation, which formerly
took up the most time, had become trivial, but a new bottleneck was
created with the resetting of switches, a process that took an
unreasonable amount of time compared with the length of time it would
take to run the calculation.

Resetting the switches was the most worrisome bottleneck, but not the
only one. The amount of time it took for the instructions to make use
of the data, although greatly reduced from the era of manual

calculation, was also significant -- in ballistics, the ultimate goal of
automating calculation was to be able to predict the path of a missile
before it landed, not days or hours or even just minutes later. If only
there was a more direct way for the different sets of instructions -- the
inflexible, slow-to-change component of the computing system -- to
interact with the data stored in the electronic memory, the more
quickly accessible component of computation. The solution, as von
Neumann and colleagues formulated it, was an innovation based upon
a logical breakthrough.

The now-famous "First Draft" described the logical properties of a true
general-purpose electronic digital computer. In one key passage, the
EDVAC draft pointed out something that Babbage, if not Turing, had
overlooked: "The device requires a considerable memory. While it
appears that various parts of this memory have to perform functions
which differ somewhat in their nature and considerably in their
purpose, it is nevertheless tempting to treat the entire memory as one
organ." In other words, a general-purpose computer should be able to
store instructions in its internal memory, along with data.

What used to be a complex configuration of switchboard settings could
be symbolized by the programmer in the form of a number and read by
the computer as the location of an instruction stored in memory, an
instruction that would automatically be applied to specified data that
was also stored in memory. This meant that the program could call
up other programs, and even modify other programs, without
intervention by the human operator. Suddenly, with this simple
change, true information processing became possible.

This is the kernel of the concept of stored programming, and although
the ENIAC team was officially the first to describe an electronic
computing device in such terms, it should be noted that the abstract
version of exactly the same idea was proposed in Alan Turing's 1936
paper in the form of the single tape of the universal Turing machine.
And at the same time the Pennsylvania group was putting together the
EDVAC report, Turing was thinking again about the concept of stored
programs:

So the spring of 1945 saw the ENIAC team on one hand, and Alan Turing
on the other, arrive naturally at the idea of constructing a universal
machine with a single "tape." . . .

But when Alan Turing spoke of "building a brain," he was working and
thinking alone in his spare time, pottering around in a British back garden
shed with a few pieces of equipment grudgingly conceded by the secret
service. He was not being asked to provide the solution to numerical
problems such as those von Neumann was engaged upon; he had been
thinking for himself. He had simply put together things that no one had put
together before: his one tape universal Turing machine, the knowledge that
large scale pulse technology could work, and the experience of turning
cryptanalytic thought into "definite methods" and "mechanical processes."
Since 1939 he had been concerned with little but symbols, states, and
instruction tables -- and with the problem of embodying these as effectively
as possible in concrete forms.

With the EDVAC design, ballistics calculators took the first step toward
general-purpose computers, and it became clear to a few people that

such devices would surely evolve into something far more powerful.
The kind of uses the inventors envisioned for the future of their
technology was a cause for one of several major theoretical
disagreements that were to surface soon thereafter among the four
ENIAC principals. Von Neumann and Goldstine saw the opportunity to
build an incredibly powerful research tool for scientists and
mathematicians. Mauchly and Eckert were already thinking of business
and government applications outside military or research institutions.

The first calculation run on ENIAC in December, 1945, six months after
the "First Draft," was a problem posed by scientists from Los Alamos
Laboratories. ENIAC was formally dedicated in February, 1946. By then,
the patriotic solidarity enforced upon the research team by wartime
conditions had faded away. Von Neumann was enthusiastic about the
military and scientific future of the computer-building enterprise, but
the two young men who had dreamed up the computer project before
the big brass stepped in were getting other ideas about how their
brain-child ought to mature. The tensions between institutions, people,
and ideas mounted until Mauchly and Eckert left the Moore School on
March 31, 1946, over a dispute with the university concerning patent
rights to ENIAC. They founded their own group shortly thereafter,
eventually naming it The Eckert-Mauchly Computer Corporation.

When Mauchly and Eckert later suggested that they were, in fact, the
sole originators of the EDVAC report, they were, in Goldstine's phrase,
"strenuously opposed" by Goldstine and von Neumann. The split turned
out to be a lifelong feud. Goldstine, writing in 1972 from his admittedly
partial perspective, was unequivocal in pointing out von Neumann's
contributions:

First, his entire summary as a unit constitutes a major contribution and had
a profound impact not only on the EDVAC but also served as a model for
virtually all future studies of logical design. Second, in that report he
introduced a logical notion adapted from one of McCulloch and Pitts, who
used it in a study of the nervous system. This notation became widely
used, and is still, in modified form, an important and indeed essential way
for describing pictorially how computer circuits behave from a logical point
of view.

Third, in the famous report he proposed a repertoire of instructions for the
EDVAC, and in a subsequent letter he worked out a detailed programming
for a sort and merge routine. This represents a milestone, since it is the
first elucidation of the now famous stored program concept together with a
completely worked-out illustration.

Fourth, he set forth clearly the serial mode of operation of the modern
computer, i.e., one instruction at a time is inspected and then executed.
This is in sharp distinction to the parallel operation of the ENIAC in which
many things are simultaneously performed.

While Mauchly and Eckert set forth to establish the commercial
applications of computer technology, Goldstine, von Neumann, and
another mathematician by the name of Arthur Burks put together a
proposal and presented it to the Institute for Advanced Study at
Princeton, the Radio Corporation of America, and the Army Ordnance
Department, requesting one million dollars to build an advanced
electronic digital computer. Once again, some of the thinking in this
project was an extension of the group creations of the ENIAC project.

But this "Preliminary Discussion," unquestionably dominated by von
Neumann, also went boldly beyond the EDVAC conception as it was
stated in the "First Draft."

Although the latest proposal was aimed at the construction of a
machine that would be more sophisticated than EDVAC, the authors
went much farther than describing a particular machine. They very
strongly suggested that their specification should be of the general plan
for the logical structure and fundamental method of operation for all
future computers. They were right: it took almost forty years, until
the 1980s until anyone made a serious attempt to build "non-
von Neumann machines."

"Preliminary Discussion of the Logical Design of an Electronic
Computing Instrument," which has since been recognized as the
founding document of the modern science of electronic
computer design, was submitted on June 28, 1946, but was available
only in the form of mimeographed copies of the original report to the
Ordnance Department until 1962, when a condensed version was
published in Datamation magazine. The primary contributions of this
document were related to the logical use of the memory mechanism
and the overall plan of what has been come to be known as the
"logical architecture." One aspect of this architecture was the ingenious
way data and instructions were made to be changeable during the
course of a computation without requiring direct intervention by the
human operator.

This changeability was accomplished by treating numerical data as
"values" that could be assigned to specific locations in memory. The
basic memory component of an EDVAC-type computer used collections
of memory elements known as "registers" to store numerical values in
the form of a series of on/off impulses. Each of these numbers was
assigned an "address" in the memory, and any address could contain
either data or an instruction. In this way, specific data and instructions
could be located when needed by the control unit. One result of this
was that a particular piece of data could be a variable -- like the x in
algebra -- that could be changed independently by having the results of
an operation stored at the appropriate address, or by telling the
computer to perform an operation on whatever was found at that
location.

One of the characteristics of any series of computation instructions is a
reference to data: when the instructions tell the machine how to
perform a calculation, they have to specify what data to plug into the
calculation. By making the reference to data a reference to the
contents of a specific memory location, instead of a reference to a
specific number, it became possible for the data to change during the
course of a computation, according to the results of earlier steps. It is
in this way that the numbers stored in the memory can become
symbolic of quantities other than just numerical value, in the same way
that algebra enables one to manipulate symbols like x and y without
specifying the values.

It is easier to visualize the logic of this schema if you think of the

memory addresses as something akin to numbered cubbyholes or post-
office boxes -- each address is nothing but a place to find a message.
The addresses serve as easily located containers for the (changeable)
values (the "messages") to be found inside them. Box #1, for example,
might contain a number; box #2 might contain another number; box
#3 might contain instructions for an arithmetic operation to be
performed on the numbers found in boxes #1 and #2; box #4 might
contain the operation specified in box #3. The numbers in the first two
boxes might be fixed numbers, or they might be variables, the values
of which might depend on the result of other operations.

By putting both the instructions and the raw data inside the same
memory, it became possible to perform computations much faster than
with ENIAC, but it also became necessary to devise a way to clearly
indicate to the machine that some specific addresses contain
instructions and other addresses contain numbers for those instructions
to operate on.

In the "First Draft," von Neumann specified that each instruction should
be designated in the coding of a program by a number that begins with
the digit 1, and each of the numbers (data) should begin with the digit
0. The "Preliminary Report" expanded the means of distinguishing
instructions from data by stating that computers would keep these two
categories of information separate by operating during two different
time cycles, as well.

All the instructions are executed according to a timing scheme based
on the ticking of a built-in clock. The "instruction" cycles and
"execution" cycles alternate: On "tick," the machine's control unit
interprets numbers brought to it as instructions, and prepares to
execute the operations specified by the instructions on "tock," when the
"execution" cycle begins and the control unit interprets input as data to
operate upon.

The plan for this new category of general-purpose computer not only
specified a timing scheme but set down what has become known as the
"architecture" of the computer -- the division of logical functions among
physical components. The scheme had similarities to both Babbage's
and Turing's models. All such machines, the authors of the "Preliminary
Report" declared, must have a unit where arithmetic and logical
operations can be performed (the processing unit where actual
calculation takes place, equivalent to Babbage's "mill"), a unit where
instructions and data for the current problem can be stored (like
Babbage's "store," a kind of temporary memory device), a unit that
executes the instructions according to the specified sequential order
(like the "read/write head" of Turing's theoretical machine), and a unit
where the human operator can enter raw information or see the
computed output (what we now call "input-output devices").

Any machine that adheres to these principles -- no matter what
physical technology is used to implement these logical functions
-- is an example of what has become known as "the von
Neumann architecture." It doesn't matter whether you build such a
machine out of gears and springs, vacuum tubes, or transistors, as

long as its operations follow this logical sequence. This theoretical
template was first implemented in the Unites States at the Institute for
Advanced Study. Modified copies of the IAS machine were made for the
Rand Corporation, an Air Force spinoff "think tank" that was
responsible for keeping track of targets for the nation's new but fast-
growing nuclear armory, and for the Los Alamos Laboratory. Against
von Neumann's mild objections, the Rand machine was dubbed
JOHNNIAC. The Los Alamos machine assigned to nuclear weapons-
related calculations was given the strangely uneuphemistic name of
MANIAC.

(Neither EDVAC, the IAS machine, the Los Alamos machine, nor the
Rand machine was the first operational example of a fully functioning
stored-program computer. British computer builders, who had been
pursuing parallel research and who were aware of Von Neumann's
ideas, beat the Americans when it came to constructing a machine
based on the logical principles enunciated by von Neumann. The first
machine that was binary, serial, and used stored-program memory was
EDSAC -- the Electronic Delay Storage Automatic Calculator, built at
the University Mathematical Laboratory, University of Cambridge,
England.)

In a von Neumann machine, the arithmetic and logic unit is where the
basic operations of the system are wired in. All the other instructions
are constructed out of these fundamentals. It is possible, in principle,
to build a device of this type with very few, extremely simple, built-in
operations. Addition, for example, could be performed over and over
again whenever a multiplication operation is requested by a program.
In fact, the only two operations that are absolutely necessary are "not"
and "and." The problem with using a few very simple hardwired
operations and proportionally complex software structures built
from them is that it slows down the operation of the computer:
Because instructions are executed one at a time ("serially") as
the internal clock ticks, the number of basic instructions in a
program dictates how long it takes a computer to run that
program.

The control unit specified by the "Preliminary Report" -- the component
that supervises the execution of instructions -- was the materialization
of the formal logic device created by Emil L. Post and Turing, who had
proved that it was possible to devise codes in terms of numbers that
could cause a machine to solve any problem that was clearly statable.
This is where the symbol meets the signal, where sequences of on and
off impulses in the circuits, the Xs and Os on the cells of the endless
tape, the strings of numbers in the programmer's code, marry the
human-created computation to the machine that computes.

The input-output devices were the parts of the system that were to
advance the most slowly while the switch-based memory, arithmetic,
and control components ascended through orders of magnitude. For
over a decade after ENIAC, punched cards were the main input devices,
and for over two decades, teletype machines were the most common
output devices.

The possibility of future breakthroughs in this area and their
implications were not overlooked. In a memorandum written in
November, 1945, concerning one of the early proposals for the IAS
machine, von Neumann anticipated the possibility of creating a more
visually oriented output device:

In many cases the output really desired is not digital (presumably printed)
but pictorial (graphed). In such situations the machine should graph it
directly, especially because graphing can be done electronically and hence
more quickly than printing. The natural output in such a case is an
oscilloscope, i.e., a picture on its fluorescent screen. In some cases these
pictures are wanted for permanent storage . . . in others only visual
inspection is desired. Both alternatives should be provided for.

But a personal interactive computer, helpful as such a device might be
to a mind such as von Neumann's, was not an interesting enough
problem. After solving interesting problems about the processes that
take place in the heart of stars, a scientific-technological tour de force
that also became a historical point of no return when the scientists'
employers demonstrated their creation at Hiroshima, and then solving
another set of problems concerned with the creation of computing
machinery, all the while pontificating about the most potent aspects of
foreign policy to the leaders of the most powerful nation in history,
John von Neumann was aiming for nothing less than the biggest secret
of all. In the late 1940s and early 1950s, the most interesting scientific
question of the day was "what is life?"

To someone who had been at Alamogordo and the Moore School, it
would not have been too farfetched to believe that the next intellectual
conquest might bring the secret of physical immortality within reach.
Certainly he would never know whether he could truly resolve the most
awesome of nature's mysteries until he set his mind to decoding
the secret of life. And that he did. Characteristically, von Neumann
focused on the aspect of the mystery of life that appealed to his
dearest instincts and most powerful capacities -- the pure, logical,
mathematical underpinnings of nature's code. He was particularly
interested in the logical properties of the theoretical devices known as
automata, of which Turing's machine was an example.

Von Neumann was especially drawn to the idea of self-reproducing
automata -- mathematical patterns in space and time that had the
property of being able to reproduce themselves. He was able to draw
on his knowledge of computers, his growing understanding of
neurophysiology and biology, and make particularly good use of his
deep understanding of logic, because he saw self-replicating automata
as essentially logical beasts. The way the task was accomplished by
living organisms of the type found on earth was only one way it could
be done. In principle, the task could be done by a machine that could
follow a plan, because the plan, and not the mechanism that carried it
out, was a part of the system with the special, heretofore mysterious
property that distinguished life from nonliving matter.

Von Neumann approached "cellular automata" on an abstract level, just
as Turing did with his first machines. As early as 1948, he showed that
any self-replicating system must have raw materials, a program that
provides instructions, an automaton that follows the instructions and

arranges the symbols in the cells of a Turing-type machine, a system
for duplicating instructions, and a supervisory unit -- which turned out
to be an excellent description of the DNA direction of protein synthesis
in living cells.

Another thing that interested Johnny was the gamelike aspect of the
world. Accordingly, he thought about the way his self-reproducing
automaton was like a game:

Making use of the work done by his colleague Stanislav Ulam, von
Neumann was able to refine his calculations and make them more generally
applicable. Von Neumann's mental experiment, which we can easily present
in the form of a game, makes use of a homogeneous space subdivided by
cells. We can think of these cells as squares on a playing board. A finite
number of states -- e.g., empty, occupied, or occupied by a specific color --
is assigned to a square. At the same time, a neighborhood is defined for
each cell. This neighborhood can consist of either the four orthogonally
bordering cells or the eight orthogonally and diagonally bordering cells. In
the space divided up this way, transition rules are applied simultaneously to
each cell. The transition any particular cell undergoes will depend on its
state and on the states of its neighbors. Von Neumann was able to prove
that a configuration of about 200,000 cells, each with 29 different possible
states and each placed in a neighborhood of 4 orthogonally adjacent
squares, could meet all the requirements of a self-reproducing automaton.
The large number of elements was necessary because von Neumann's
model was also designed to simulate a Turing machine. Von Neumann's
machine can, theoretically, perform any mathematical operation.

In 1950, when it was evident to all that the engineering phase of
computer technology was accomplishing impressive tasks, von
Neumann postulated one such system in terms of a factory that
contains within it the machinery and the detailed blueprints for
making identical factories (and identical blueprints) from raw
materials provided to it. Take that a step up in complexity, and the
details can include a specification for subsystems that find raw
materials for the factory from the environment, with no human
intervention.

If one fantasizes one step farther on the complexity spectrum, the
instructions and capabilities could specify factories capable of building
spaceships to send more spaceships to other planets, where the raw
materials found would be shaped into more factory-spaceship-
launchpad systems, and if you could build factories that could build two
or more such complexes, you could have a counterforce to the
generally disorderly trend of the cosmos, in the form of a (mindless?
) horde of factory-building factories, munching outward through
the galaxies like an anti-entropic swarm of logical locusts.

While it definitely sounds like a science-fiction story, and many would
add that it could be interpreted to be an idea of such inhuman coldness
as to be termed "fiendish" such scenarios are legitimate topics in the
field of automata, and are still known as "von Neumann machines" (as
distinguished from "the von Neumann machine," the logical architecture
he created for digital computers).

Von Neumann died in 1957, before he could achieve a breakthrough in

the field of automata. Like Ada, he died of cancer, and like Ada, he was
said to have suffered terribly, as much from the loss of his intellectual
facilities as from pain. But the world he left behind him was powerfully
rearranged by what he had accomplished before he failed to solve his
last, perhaps most interesting problem.

(Romanian translation of this chapter)

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Five:
Ex-Prodigies and
Antiaircraft Guns

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://webhostinggeeks.com/science/rheingold-texts-ro
http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Five:
Ex-Prodigies and Antiaircraft Guns
Today, when molecular biologists talk about the "coding" of the DNA
molecule, cognitive scientists discuss the "software of the brain," and
behavioral psychologists write about "reprogramming old habits," they
are all making use of a scientific metaphor that emerged from the
technology of computation, but which has come to encompass much
more than the mechanics of calculating devices. Cybernetics, the study
of communication and control in physical and biological systems, was
born when yet another unusual mind was drawn into the software quest

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

through the circumstances of war.

Because of the discoveries of Norbert Wiener and his colleagues,
discoveries that were precipitated by the wartime need for a specific
kind of calculating engine, software has come to mean much more
than the instructions that enable a digital computer to accomplish
different tasks. From the secrets of life to the ultimate fate of the
universe, the principles of communication and control have successfully
been applied to the most important scientific puzzles of our age. These
principles were discovered through a strange concatenation of events,
and the people who were involved in those events were no less unusual
than the software patriarchs who preceded them.

Eccentrics and prodigies of both the blissful and agonized varieties
dominated the early history of computation. Ada Lovelace, George
Boole, John von Neumann, Alan Turing, and Presper Eckert were all in
their early twenties or younger when they did their most important
work. All except Eckert were also more than a little bizarre. But for
raw prodigy combined with sheer imaginative eccentricity,
Norbert Wiener, helmsman of the cybernetic movement, stands
out even in this not-so-ordinary crowd.

Norbert's father, a Harvard professor who was a colorful character in
his own right, had definite opinions about education, and publicly
declared his intention to mold his young son's mind. Norbert was to
become a lovingly but systematically engineered genius. In 1911, an
article in a national magazine reported these plans:

Professor Leo Wiener of Harvard University . . . believes that the secret of
precocious mental development lies in early training . . . He is the father of
four children, ranging in age from four to sixteen; and he has the courage
of his convictions in making them the subject of an educational experiment.
The results have . . . been astounding, more especially in the case of his
oldest son, Norbert.

This lad, at eleven, entered Tufts College, form which
he graduated in 1909, when he was only fourteen
years old. He then entered Harvard Graduate School.

Norbert completed his examinations and his doctoral dissertation in
mathematical logic when he was eighteen, then studied with Bertrand
Russell in Cambridge and David Hilbert in Göttingen, where he later
crossed paths with von Neumann, nine years his junior, also a student
of Hilbert's, and a world renowned authority in several of Wiener's
fields of interest. One of the most immediate differences between the
two prodigies, even this early in their careers, was the pronounced
contrast between their personalities.

Rare was the teacher or student who failed to be charmed by von
Neumann, who went out of his way to assure fellow humans that he
was just as mortal as everyone else. Wiener, an insecure, far less
worldly, sometimes vain, and often hypersensitive personality, simply
didn't go to as much trouble to make an impression outside the realm
of mathematics, where he was confident to the point of arrogance.
Bertrand Russell wrote of Wiener, in a letter to a friend:

http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Mathematicians/Russell.html
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Mathematicians/Russell.html
http://loki.sonoma.edu/Math/faculty/falbo/hilbert.html

At the end of Sept. an infant prodigy named Wiener, Ph.D. (Harvard), aged
18, turned up with his father who teaches Slavonic languages there, having
come to America to found a vegetarian communist colony, and having
abandoned that intention for farming, and farming for the teaching of
various subjects. . . . The youth has been flattered, and thinks himself God
Almighty -- there is a perpetual contest between him and me as to which is
to do the teaching.

Like Babbage, Wiener was famous for the feuds he carried on. While a
student at Göttingen, he impressed the administrative head of the
university, Richard Courant, but Wiener accused him of
misappropriating several of the younger man's mathematical ideas and
appending Courant's own name to them. When he returned to
Cambridge, the outraged young genius turned his energies to a novel
that was never published, about someone who bore a remarkable
resemblance to Courant, and who was depicted as a man who stole the
ideas of young geniuses.

Before World War I, Wiener wrote pieces for Encyclopedia Americana,
taught philosophy at Harvard and mathematics at the University of
Maine. During World War I, Private Wiener was assigned to the U.S.
Army's Aberdeen proving Grounds in Maryland, where he was one of
the mathematicians responsible for the computation of firing tables. His
service in 1918 was one of the reasons it was natural for Wiener's
friend Vannevar Bush to think of Norbert thirty years later, when the
allies needed a way to put firing tables directly into the radar-guided
mechanism of antiaircraft guns.

After the end of World War I, Norbert Wiener joined the Massachusetts
Institute of Technology as an instructor of mathematics. It turned out
to be the beginning of his lifelong association with that institution. By
the early 1920s, like his fellow polymath across the Atlantic, Wiener
was turning out world-class papers in mathematics, logic, and
theoretical physics. At MIT Wiener began his long friendship with
Vannevar Bush, a man who in the early 1930s was deeply involved in
the problems of building mechanical calculators, and in the 1940s took
charge of the largest-scale administration of applied science in history.

Decades later, Wiener quarreled with his lifelong friend because Bush
didn't side strongly enough with Wiener in his feud with two other
colleagues. Such feuds were one of the more well-known characteristics
of Wiener's style -- he tended to take disagreements over scientific
issues as personal attacks, even if the disputes involved his closest
personal friends. Like Babbage, his judgement did not always seem
equal to his imagination.

It must be said that Wiener did have many warm lifelong friendships
that didn't go sour. For all his moodiness and paranoia, Wiener
truly cared about "the human use of human beings" (as he was
to title one of his later books on the implications of cybernetics), and
passionately reminded the scientific community of their special
responsibilities regarding the apocalyptic weaponry they had created.
Despite his failure to get along with some of his colleagues, Wiener
never wavered in his belief that the future of scientific
enterprise lay in interdisciplinary cooperation. His friendship with

the physiologist Arturo Rosenbluth, and their shared dream of
stimulating such interdisciplinary pursuits, catalyzed the origins of
cybernetics. But Wiener might never have worked with Rosenblueth if it
wasn't for the Battle of Britain.

Like von Neumann, Wiener's most important need was for interesting
problems. Like von Neumann, he knew that the quantum revolution
was the most interesting problem of the 1920s. And one of the effects
of quantum physics on the young mathematician's thinking was to
convince him that some of the most interesting problems of purely
theoretical mathematics could end up having the most concrete
applications in the real world.

Another effect of quantum physics was the importance of
probability and statistical measures for dealing with phemomena
based on uncertain information. Wiener's familiarity with these concepts
was to mature under unexpected circumstances. Like von Neumann
and Goldstine and Eckert, in the late 1930s Wiener wasn't yet aware
that ballistics would be the avenue for bringing his knowledge of
probability and statistics to bear on the most pragmatic problems,
eventually to yield most astonishing results. But, like them, he would
soon come to understand that his war-related task was leading to
profound scientific consequences far beyond the bounds of ballistics.

The scene was set for the emergence of Wiener's astounding results,
not by any series of scientific events, but by the political circumstances
of the early 1940s. When war broke out in Europe, Bush assigned
Wiener to the antiaircraft control project at MIT, under the direction of
Warren Weaver, himself a distinguished mathematician. It seemed like
a natural step for Wiener, considering his prior experience in the early
ballistic calculation efforts at Aberdeen during World War I.

The key ideas that led to computers were in the air in the late 1930s,
albeit in the rather rarefied air of metamathematics and other esoteric
intellectual disciplines. The necessities of war and the coordinated
scientific effort that they entailed served to bring those key ideas
together with the few people who were equipped to understand them
more quickly and urgently than might have happened in more normal
times.

Von Neumann and Goldstine's accidental meeting at Aberdeen was
fortuitous and unlikely, but it could hardly be called incredible. One of
the circumstances that brought Wiener together with the
problem of antiaircraft guns, however, was downright weird. The
technological turning point of the Battle of Britain, and a critical
chapter in the science of communications systems in machines
and organisms, originated when a young Bell Laboratories
employee in America had an odd dream. The crucial dream was
not about mathematics or engineering problems connected with
computers, but was related to technical issues involving antiaircraft
artillery. And it was the question of how to deal with dive bombers that
was the rather urgent if indirect problem that led to Wiener's later
insights.

http://www.links.net/vita/swat/course/reality/quantum.html

The pathway between military strategy and scientific theory was far too
circuitous, coincidental, and unlikely to have been predicted in advance,
and became clearly discernible only in retrospect. In many respects, the
birth of cybernetics was the kind of story more likely to be found in a
novel than in a scientific journal. One of the historical coincidences was
the position of Vannevar Bush as the leader of war-related research. In
his role as a research administrator, Bush knew that antiaircraft
technology was one of his top priorities. As a scientist, MIT researcher,
and friend of Norbert Wiener's, Bush was also concerned with the task
of building high-speed mechanical calculators.

The allies' two most pressing problems in the early years of World War
II were the devastating U-boat war in the North Atlantic and the
equally devastating Luftwaffe attacks on Britain. Turing's secret solution
to the naval Enigma machine was responsible, in large part, for solving
the U-boat problem. But where Turing's problem was one of
cryptanalysis, of mathematically retrieving the meaning from a garbled
message, the Luftwaffe problem was one of predicting the future: How
can you shoot at a plane that is going as fast as your bullets?

Radar made it possible to track the positions of enemy aircraft, but
there was no way to translate the radar-provided information into a
ballistic equation quickly enough to do any good. And attacking
airplanes had a disconcerting habit of taking evasive action. Vannevar
Bush was well acquainted with the calculation problem when Bell
Laboratories came to him with an interesting idea for an electrically
operated aiming device. That is where the young engineer's dream
came in.

His name was D. B. Parkinson, and he was working with a group of Bell
engineers on an automatic level recorder for making more accurate
measurements of telephone transmissions -- a "control potentiometer,"
they called it. In the spring of 1940, Parkinson had the following
dream:

I found myself in a gun pit or revetment with an anti-aircraft gun crew. . . .
There was a gun there which looked to me -- I had never had any close
association with anti-aircraft guns, but possessed some general information
on artillery -- like a 3 inch. It was firing occasionally, and the impressive
thing was that every shot brought down an airplane! After three or four
shots one of the men in the crew smiled at me and beckoned me to come
closer to the gun. When I drew near he pointed to the exposed end of the
left trunnion. Mounted there was the control potentiometer of my level
recorder! There was no mistaking it -- it was the identical item.

The electrical device, as it happened, was a good start on an automatic
aiming mechanism. But very serious theoretical and mathematical
problems, having to do with the way the control device sent and
received instructions, cropped up when they tried to construct such a
mechanism. That is when Bush turned to Weaver and Wiener.

During this wartime mathematical work related to radar-directed
antiaircraft fire, Wiener recognized the fundamental relationship
between two basic problems -- communication and control. The
communication problem in the earliest days of radar was that the radar
apparatus was like a badly tuned radio receiver. The true signal of

attacking planes was often drowned out by false signals -- noise --
from other sources. Wiener recognized that this too was a kind of
cryptography problem, if the location of the enemy aircraft is seen as a
message that must somehow be decoded from the surrounding noise.

The noisy radar was more than an ordinary "interesting problem,"
because once you understand messages and noise in terms of
order and information measured against disorder and
uncertainty, and apply statistics to predict future messages, it
becomes clear (to a mathematician of Wiener's stature) that the
issue is related to the basic processes of order and disorder in
the universe. Once it is seen in statistical and mathematical terms,
the communication problem leads to the heart of something more
important, called information theory. But that branch of the story
belongs to Claude Shannon as much as, or more than, it does to
Wiener.

The control problem was where Wiener, and his very young and
appropriately brilliant assistant, an engineer by the name of Julian
Bigelow, happened upon the general importance of feedback loops.
Assuming that it is possible to feed information about a plane's path
into the aiming apparatus of a gun, how can that information be used
to predict the probable location of the plane? The use of statistics and
probability theory was one clue. A method for predicting the end of a
message based on information about the beginning was another clue.
The device in Parkinson's dream was another clue.

Then it occurred to Wiener and Bigelow that the human organism had
already solved the problem they were facing. How is any human being,
or a chimpanzee for that matter, able to reach out a hand and pick up
a pencil? How are people able to put one foot in front of the other, fall
face-forward for a short distance, and end up taking a step? Both
processes involve continuous, precise readjustments of muscles (the
servomechanisms that move the gun), guided by continuous visual
information (radar), controlled by a continuous process of predicting
trajectories. The prediction and control take place in the nervous
system (the control circuits of the animating automata).

Wiener and Bigelow looked more closely at other
servomechanisms, including self-steering mechanisms as simple
as thermostats, and concluded that feedback is the concept that
connects the way brains, automatic artillery, steam engines,
autopilots, and thermostats perform their functions. In each of
those systems, some small part of the past output is fed back to
the central processor as present input, in order to steer future
output. Information about the distance from the hand to the pencil, as
seen by the eye, is fed back to the muscles controlling the hand.
Similarly, the position of the gun and the position of the target as
sensed by radar are fed back to the automatic aiming device.

The MIT team had wondered whether someone more informed about
neurophysiology had come across analogous mathematics of pencil

pushing, with similar results. As it happened, there was another team
that, like Wiener and Bigelow, was made up of one infant prodigy and
one slightly older genius, by the names of Pitts and McCulloch
respectively, who were coming down exactly the same trail from the
other direction. A convergence of ideas that was both forced and
fortuitous, related to but distinctly different from the convergence on
digital computation, was taking place under the pressure of war.

Even von Neumann was due to get into the act, as Wiener wanted him
to do -- Wiener persuaded MIT to try to outbid Princeton for von
Neumann's attentions after the war. Politically, militarily, and
scientifically, Wiener's corner of the plot was getting thick. The
antiaircraft problem, the possible explanations for how brain
cells work, the construction of digital computers, the decoding
of messages from noise -- all these seemingly unrelated
problems were woven together when the leading characters
were brought together by the war.

The founding of the interdisciplinary study that was later named
cybernetics came about when Wiener and Bigelow wondered whether
any processes in the human body corresponded to the problem of
excessive feedback in servomechanisms. They appealed to an authority
on physiology, from the Instituto Nacional de Cardología in Mexico City.
Dr. Arturo Rosenblueth replied that there was exactly such a
pathological condition named (meaningfully) the purpose tremor,
associated with injuries to the cerebellum (a part of the brain involved
with balance and muscular coordination).

Together the mathematician, the neurophysiologist, and the engineer
plotted out a new model of the nervous system processes that they
believed would demonstrate how purpose is embodied in the
mechanism -- whether that mechanism is made of metal or flesh.
Wiener, never reluctant to trumpet his own victories, later noted that
this conception "considerably transcended that current among
neurophysiologists."

Wiener, Bigelow, and Rosenblueth's model, although indirectly derived
from top-secret war work, had such general and far-reaching
implications that it was published under the title "Behavior, Purpose
and Technology," in 1943, in the normally staid journal Philosophy of
Science. The model was first discussed for a small audience of
specialists, however, at a private meeting held in New York in 1942,
under the auspices of the Josiah Macy Foundation. At that meeting was
Warren McCulloch, a neurophysiologist who had been corresponding
with them about the mathematical characteristics of nerve networks.

McCulloch, a neurophysiologist based at the University of Illinois, was,
naturally enough in this company, an abnormally gifted and colorful
person who had a firm background in mathematics. One story that
McCulloch told about himself goes back to his student days at
Haverford College, a Quaker institution. A teacher asked him what he
wanted to do with his obviously brilliant future:

"Warren," said he, "what is thee going to be?" And I said, "I don't know,"

"And what is thee going to do?" And again I said, "I have no idea, but
there is one question that I would like to answer: What is a number that
man may know it, and a man that he may know a number?" He smiled and
said, "Friend, thee will be busy as long as thee lives."

Accordingly, the mathematician in McCulloch strongly desired a
tool for reducing the fuzzy observations and theoretical
uncertainties of neurophysiology to the clean-cut precision of
mathematics. Turing, and Bertrand Russell before him, and Boole
before that, had been after something roughly similar, but they all
lacked a deep understanding of brain physiology. McCulloch's goal was
to find a basic functional unit of the brain, consisting of some
combination of nerve cells, and to discover how that basic unit was
built into a system of greater complexity. He had been experimenting
with models of "nerve networks" and had discovered that these
networks had certain mathematical and logical properties.

McCulloch started to work with a young logician by the name of Walter
Pitts. Pamela McCorduck, a historian of artificial intelligence research,
attributes to Manuel Blum, a student of McCulloch's and now a
professor at the University of California, the story of Pitt's arrival on the
cybernetic scene. At the age of fifteen, Walter Pitts ran away from
home when his father wanted him to quit school and get a job. He
arrived in Chicago, and met a man who knew a little about logic. This
man, "Bert" by name, suggested that Pitts read a book by the logician
Carnap, who was then teaching in Chicago. Bert turned out to be
Bertrand Russell, and Pitts introduced himself to Carnap in order to
point out a mistake the great logician had made in his book.

Pitts studied with Carnap, and eventually came into contact with
McCulloch, who was interested in consulting with logicians in regard to
his neurophysiological research. Pitts helped McCulloch understand how
certain kinds of networks -- the kinds of circuits that might be
important parts of nervous systems as well as electrical devices --
could embody the logical devices known as Turing machines.

McCulloch and Pitts developed a theory that regarded nerves as
all-or-none, on-or-off, switchlike devices, and treated the
networks as circuits that could be described mathematically and
logically. Their paper, "A Logical Calculus of the Ideas Immanent in
Nervous Activity," was published in 1943 when Pitts was still only
eighteen years old. They felt that they were only beginning a line of
work that would eventually address the questions of how brain
physiology is linked to knowledge.

When Wiener, Bigelow, and Rosenblueth got together with McCulloch
and Pitts, in 1943 and 1944, a critical mass of ideas was reached. Pitts
joined Wiener at MIT, then worked with von Neumann at the Institute
for Advanced Study after the war. By the time this interdisciplinary
cross-fertilization was beginning, the ENIAC project had progressed far
enough for digital computers to join the grand conjunction of ideas.

A series of meetings occurred in 1944, involving an interdisciplinary
blend of topics that seemed to be coming from subject areas as far

afield as logic, statistics, communication engineering, and
neurophysiology. The participants were an equally eclectic assortment
of thinkers. It was at one of these meetings that von Neumann made
the acquaintance of Goldstine, whom he was to encounter again not
long afterward, at the Aberdeen railroad station. Rosenblueth had to
depart for Mexico City in 1944, but by December, Wiener, Bigelow, von
Neumann, Howard Aiken of the Harvard-Navy-IBM Mark I calculator
project, Goldstine, McCulloch and Pitts formed an association they
called "The Teleological Society," for the purpose of discussing
"communication engineering, the engineering of control devices, the
mathematics of time series in statistics, and the communication and
control aspects of the nervous system." In a word -- cybernetics.

In 1945 and 1946, at the teleological society meetings, and in personal
correspondence, Wiener and von Neumann argued about the
advisability of placing too much trust in neurophysiology. Von Neumann
thought that the kinds of tools available to McCulloch and Pitts put
brain physiologists in the metaphorical position of trying to decipher
computer circuits by bashing computers together and studying the
wreckage,

To von Neumann, the bacteriophage -- a nonliving microorganism that
can reproduce itself -- was a much more promising object of study. He
felt that much more could be learned about nature's codes by
looking at microorganisms than by studying brains. The
connection between the mysteries of brain physiology and the secrets
of biological reproduction were later to emerge more clearly from
theories involving the nature of information, and von Neumann turned
out to be right -- biologists were to make faster progress in
understanding the coding of biological reproduction than neuroscientists
were to make in their quest to decode the brain's functions.

The Macy Foundation, which had sponsored the meetings that led to
the creation of the Teleological Society, continued to sponsor free-
wheeling meetings. Von Neumann and Wiener were the dramatic co-
stars of the meetings, and the differences in their personal style
became part of the excited and dramatic debates that characterized the
formative years of cybernetics. Biographer Steve Heims, in his book
about the two men -- John von Neumann and Norbert Wiener -- noted
the way their contrasting personae emerged at these events:

Wiener and von Neumann cut rather different figures at the semiannual
conferences on machine-organism parallels, and each had his own circle of
admirers. Von Neumann was small and plump, with a large forehead and a
smooth oval face. He spoke beautiful and lucid English, with a slight
middle-European accent, and he was always carefully dressed; usually a
vest, coat buttoned, handkerchief in pocket, more the banker than the
scholar. He was seen as urbane, cosmopolitan, witty, low-key, friendly and
accessible. He talked rapidly, and many at the Macy meetings often could
not follow his careful, precise, rapid reasoning. . . .

Wiener was the dominant figure at the conference series, in his role as
brilliant originator of ideas and enfant terrible. Without his scientific ideas
and his enthusiasm for them, the conference series would never have come
into existence, nor would it have had the momentum to continue for seven
years without him. A short, stout man with a paunch, usually standing
splay-footed, he had coarse features and a small white goatee. He wore

thick glasses and his stubby fingers usually held a fat cigar. He was robust,
not the stereotype of the frail and sickly child prodigy. Wiener evidently
enjoyed the meetings and his central role in them: sometimes he got up
from his chair and in his ducklike fashion walked around the circle of tables,
holding forth exuberantly, cigar in hand, apparently unstoppable. He could
be quite unaware of other people, but he communicated his thoughts
effectively and struck up friendships with a number of the participants.

Some were intrigued as much as annoyed by Wiener's
tendency to go to sleep and even snore during a
discussion, but apparently hearing and digesting what
was being said. Immediately upon waking he would often make
penetrating comments.

Although the nerve network theory was to suffer a less than glorious
fate when neurophysiology progressed beyond what was known about
nerve cells in the 1940s, the nerve-net models had already profoundly
influenced the design of computers. (Later research showed that
switching circuits are not such an accurate model for the human
nervous system, because neurons do not act strictly as "all-or-none"
devices.) Despite his misgivings about the state of the art in theories of
brain functioning, in his 1945 "first Draft," von Neumann adopted the
logical formalism proposed by McCulloch and Pitts. When the
architectural template of all future general-purpose computers was first
laid down, the cyberneticists' findings influenced the logical design.

In 1944 and 1945, Wiener was already thinking about a scientific
model involving communication, information, self-control -- an all-
embracing way of looking at nature that would include explanations for
computers and brains, biology and electronics, logic and purpose. He
later wrote: "It became clear to me almost at the very beginning that
these new concepts of communication and control involved a new
interpretation of man, of man's knowledge of the universe, and of
society."

Wiener was convinced that biology, even sociology and anthropology,
were to be as profoundly affected by cybernetics as electronics theory
or computer engineering; in fact anthropologist Gregory Bateston was
closely involved with Wiener and later with the first AI researchers.
While Shannon published information theory, and von Neumann pushed
the development of computer technology, Wiener retreated from the
politics of big science in the postwar world to articulate his grand
framework.

After the war, as the plans for the Institute for Advanced Study's
computer proposed by von Neumann were put into action, with Julian
Bigelow as von Neumann's chief engineer on the project, and as
Mauchly and Eckert struck out on their own to start the commercial
computer industry, Wiener headed for Mexico City to work with
Rosenblueth. Then, in the spring of 1947, Wiener went to England,
where he visited the British computer-building projects, and spoke with
Alan Turing.

When he returned to Mexico City, Wiener wrote his book and decided
to title it and the new field Cybernetics, from the Greek word meaning
"steersman." It was subtitled: or Control and Communication in the

http://pespmc1.vub.ac.be/CYBSYSTH.html
http://members.gnn.com/cybernetic/CTI.html

Animal and the Machine. Cybernetics was the description of a
general science of mechanisms for maintaining order in a
disorderly universe, the process for steering a course through
the random forces of the physical world, based on information
about the past and forecasts about the future.

When a steersman moves a rudder, the craft changes course. When
the steersman detects that the previous change of course has
oversteered, the rudder is moved again, in the opposite direction. The
feedback of the steersman's senses is the controlling element that
keeps the craft on course. Wiener intended to embed in the name
of the discipline the idea that there is a connection between
steering and communication. "The theory of control in engineering,
whether human or animal or mechanical," he stated, "is a chapter in
the theory of messages."

The mathematics underlying the steering of rudders or antiaircraft guns
and the steering of biological systems was the same -- it was a general
law, Wiener felt, like the laws of motion or gravity. Wiener's intuitions
turned out to be correct. Communication and control, coding and
decoding, steering and predicting, were becoming more important to
physicists and biologists, who were interested in phenomena very
different from guns or computing machines.

In the late 1940s, another new category of interdisciplinary theorists
who would come to be known as molecular biologists were beginning to
think about the coding mechanism of genetics. Even the quantum
physicists were looking into the issues that were so dear to Wiener,
Bigelow, and Rosenblueth. It looked as if Wiener might be onto an
even more cosmic link between information, energy, and
matter. A scientific watershed was imminent, and many of his
colleagues were expecting more major breakthroughs from Wiener. By
the fall of 1947, prior to its 1948 publication, his book on cybernetics
was making the rounds of government and academic experts in
manuscript form.

Robert Fano, a professor of electrical engineering who eventually
became head of the electrical engineering department at MIT and
administrative leader of MIT's pioneering computer project known as
MAC, witnessed some strange behavior on Wiener's part around that
time, behavior that Fano later had cause to remember when Claude
Shannon published his work. Fano was working on his doctoral thesis in
electrical engineering. From time to time, Wiener would walk into
the student's office, inform him rather cryptically that
"information is entropy," and walk out without saying another
word.

By the end of 1946, Wiener had reached a decision that had nothing to
do with the cold formalisms of mathematics, a decision that
distinguished him in yet another way from his weaponry-oriented
colleague. Renouncing any future role in weapons-related research,
Wiener deliberately removed himself from the hot center of the action

in the development of computer technology (as opposed to cybernetic
theory) when he stated: "I do not expect to publish any future work of
mine which may do damage in the hands of irresponsible militarists."
Fortunately for Wiener, and for the scientific world, the implications of
his discoveries were not limited to military applications. It quickly
became evident that weapons were not the only things of interest that
were built from communication and control codes.

By the late forties and early fifties, the atmosphere was crackling with
new scientific ideas having to do with what nobody yet called
information theory. The quantum physicist Erwin Shroedinger gave a
famous lecture at Cambridge University in 1945, later published, on the
topic "What is Life?" One of the younger physicists in the audience,
Francis Crick, decided to switch to biology, where the most crucial
decoding problem in scientific history was waiting for him. Von
Neumann turned out to be right in his dispute with Wiener -- the
bacteriophage, not the nervous system, was the subject of the next
great decoding.

Von Neumann's ideas about self-reproducing automata -- patterns
complex enough and highly ordered enough to direct their own
replication -- seemed to point toward the same idea. Something about
order and disorder, messages and noise, was near the heart of life. The
manipulation of information looked like something more like a game
mathematicians play, even more than a capability of machines.
Information, in a way that was not mathematically demonstrated until
Claude Shannon's 1948 publications, began to look like a reflection of
the way the universe works. The whole idea was a wrenching of mind-
set, at first for scientists, then for many others.

At the beginning of the twentieth century, scientists saw the universe
in terms of particles and forces interacting in complicated but orderly
patterns that were, in principle, totally predictable. In important
ways, all of the nonscientists who lived in an increasingly
mechanized civilization also saw the universe in terms of
particles and forces and a clockwork cosmos. Around sixty years
ago, quantum theory did away with the clockwork and
predictability. Around thirty years ago, a few people began to look at
the world and see, as Norbert Wiener put it, "a myriad of To Whom It
May Concern messages."

The idea that information is still a fundamental characteristic of the
cosmos, like matter and energy, is still young, and further surprise
discoveries and applications are sure to pop up before a better model
comes along. Before the 1950s, only scientists thought about the idea
that information had anything to do with anything. Common words like
communication and message were given new, technical meanings by
Wiener and Claude Shannon, who independently and roughly
simultaneously demonstrated that everything from the random motions
of subatomic particles to the behavior of electrical switching networks
and the intelligibility of human speech is related in a way that can be
expressed through certain basic mathematical equations.

The information-related equations were useful in building computers

and telephone networks, but they also had significant impact on all the
sciences. Research inspired by the information-communication model
has provided clues to some of the fundamental features of the
universe, from the way the cellular instructions for life are woven into
the arrangement of atoms in DNA molecules, to the process by which
brain cells encode memory. The model has become what Thomas Kuhn
calls a "scientific paradigm." The two fundamental pillars of this
paradigm were Claude Shannon's information and Wiener's cybernetics.

The significance of these two theoretical frameworks that came to the
attention of scientists in the late 1940s and began to surface in public
consciousness in the 1950s, and the mass attitude shift they implied,
was noted by Paula McCorduck, in her history of artificial intelligence
research:

Cybernetics recorded the switch from one dominant model, or set of
explanations for phenomena, to another. Energy -- the notion central to
Newtonian mechanics -- was now replaced by information. The ideas of
information theory, such as coding, storage, noise, and so on, provided a
better explanation for a whole host of events, from the behavior of
electronic circuits to the behavior of a replicating cell. . . . These terms
mean pretty much what you'd think. Coding refers to "a system of signals
used to represent letters or numbers in transmitting messages"; storing
means holding these signals until they're needed. Noise is a disturbance
that obscures or affects the quality of a signal (or message) during
transmission.

It turns out that coding and storing happen to be central problems in
the logical design of computing machines and the creation of software.
The basic scientific work that resulted in information theory did not
originate from any investigation of computation, however, but from an
analysis of communication. Claude Shannon, several years younger
than Turing, working about a year after the British logician's discoveries
in metamathematics, did another nifty little bit of graduate work that
tied together theory and engineering, philosophy, and machinery.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Six:
Inside Information

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Six:
Inside Information
His unicycle skills notwithstanding, Claude Shannon has been more
flamboyant but no less brilliant than his elder colleagues. Rather than
advertising his own genius like Wiener, or blitzing the world of science
with salvo after salvo of landmark findings like von Neumann, Claude
Shannon has published unprolifically, and he spends more time
attempting to diminish rather than embellish the mythology that grew up
around his infrequent but monumental contributions. A modest man,
perhaps, but hardly a timid one, when Shannon has something to

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://canyon.ucsd.edu/infoville/schoolhouse/class_html/duy.html
http://canyon.ucsd.edu/infoville/schoolhouse/class_html/duy.html

publish, it usually changes the world.

Claude Shannon was a bona fide prodigy, twenty-two years old when
he published (in 1937) the famous MIT master's thesis that linked
electrical circuitry to logical formalisms. He was the peer of pioneers
like Turing, Wiener, and von Neumann, the teacher of the first
generation of artificial intelligence explorers like John McCarthy and
Marvin Minsky, and the mentor of Ivan Sutherland, who has been one
of the most important contemporary infonaut-architects.

When Shannon's papers establishing information theory were published
in 1948, he was thirty-two. The impact on science of this man's career
was incalculable for these two contributions alone, but he also wrote a
pioneering article on the artificial intelligence question of game-playing
machines, published in 1950. In 1953, at about the same time von
Neumann and Turing were both thinking about the mathematical
possibilities of self-reproducing machinery, Shannon published another
major work on the subject of these special automata.

In 1956, at the age of forty, Shannon was one of the organizers of the
conference at Dartmouth that gave birth to the field of artificial
intelligence. From the pre-war discoveries that scooped Wiener and von
Neumann, to the explorations in the 1950s that led to both AI and
multi-access computer systems, his life and ideas formed the single
most important bridge between the wartime origins of cybernetics and
digital computers and the present age of artificial intelligence and
personal computing.

What Shannon did in 1937 was to provide a way to design machines
based on the logical algebra described a century before by George
Boole. Boole, in The Laws of Thought, stated that he had succeeded in
connecting the process of human reason to the precise symbolic power
of mathematics. There were only two values in the logical calculation
system that Boole proposed: 1 and 0. If a value is true, it can be
designated by the symbol 1; and if it is false, the symbol 0 can be
used. In this system, a truth table describes the various possible logical
states of a system. Given an input state, a truth table for a specific
operation determines the appropriate output state for whenever that
operation is applied to that input. Another way of saying that would be
that given a starting tape, the truth table determines what the ending
tape will be.

In Boolean Algebra, one fundamental logical operation is not, an
operation that reverses the input, so that the output of a "not"
operation is the opposite of the input (remember that there are only
two symbols or states). Another fundamental operation is and, which
dictates that the output is true (or "on" or "1") if and only if every one
of the several inputs are also true ("on," "1"). For example, the listing
in the table for "A is true and B is true" would be set for "1" when A is
"1" and B is "1" and set for "0" in all other cases. One could look up
the answer in the truth table by finding the input row where both A and
B are equal to 1:

NOT AND
Input Output Input A Input B Output

http://brainop.media.mit.edu/people/minsky.html
http://www.kzoo.edu/%7Eabrady/CS400/bioW96/soulier.html

0 1 0 0 0
1 0 0 1 0

1 0 0
1 1 1

The way that results are determined by matching the proper rows and
columns in the truth tables, a purely automatic procedure, has a crucial
resemblance to the "instruction tables" Turing proposed.

One of the important features of Boolean algebra is the way logical
operations can be put together to form new ones, and collections of
logical operations can be put together to perform arithmetic operations.
Logical syllogisms can be constructed in terms of operations on zeroes
and ones, by arranging for the output of one truth table to feed input
to another truth table. For example, it turns out that by putting a not
before every and input, and putting another not after its output, it is
possible to build an "or" operation. By stringing various sequences of
only these two basic operations, "not" and "and," it is possible to build
procedures for adding, subtracting, multiplying, and dividing. Logic and
arithmetic are thus intimately and simply related. What nobody knew
until Shannon told us was that the same algebra could describe the
behavior of electrically switched circuits.

Equally important was the way these combinations of logical and
arithmetic operations could be used to build a "memory" operation.
Boolean algebra makes it possible to devise a procedure, or build a
device, the "state" of which can store specific information -- either data
or operations. If electrical circuitry can perform logical and
mathematical operations, and can also store the result of those
operations, then electronic digital computers can be designed.

Until Shannon, Boolean algebra had been a curious and almost totally
forgotten eddy in the mainstream of mathematical thought for almost a
century, and was certainly unknown to the more practical-minded world
of physics and electrical engineering. And that is where the genius of
Shannon's rediscovery lies, for he was writing a thesis in electrical
engineering, not mathematical logic, and the objects of his concern
were not the processes of thought but the behavior of large circuits of
electrical switches connected together into the kinds of circuits one
finds in a telephone system.

Shannon was interested in the properties of complicated
electrical circuits that were built from very simple devices known as
relays. A relay is a switch -- a device that opens or closes a circuit,
permitting or blocking the flow of electricity -- not unlike an ordinary
light switch, except a relay is not switched on or off by a human hand,
but by the passage of an electrical current.

A relay contains an electromagnet. When a small current flows into the
relay, the electromagnet is activated, closing the circuit controlled by
the relay until the input current is turned off. In other words, the
electromagnet is a small electrical circuit that opens and closes another
electrical circuit. The circuit of one relay can also control the
electromagnet of the next relay, and so on, until you have a complete
circuit that is made of nothing but switches, all controlling one another,

depending on how they are set at the beginning and how they are
altered by new input.

Each relay and circuit controlled by that relay can be in only one of two
states, on or off. This two-state characteristic of switched circuits is
what links electricity to logic, for each relay-controlled circuit can be
seen as a truth table, where current flows from the output only when
specified input conditions are satisfied, and logical operations can be
seen as physical devices that emit an output pulse if and only if all of
their input switches are on, or off, or some specified combination,

In the 1930s, telephone systems were using ever larger and more
complicated mazes of circuits controlled by these relays. Instead of
requiring a human operator to plug the proper jack into the right part
of a switchboard, relays could close the circuit when the specified input
conditions were reached. Using relays, all kinds of useful things could
be done in the way of automatic dialing and routing. But the growing
complexity of the circuitry was getting to be a problem. It was
becoming harder and harder to figure out what these big collections of
switches were doing.

Shannon was looking for a mathematical procedure that was best
suited for describing the behavior of relay circuits. His thesis showed
how George Boole's algebra could be used to describe the operations of
these complex circuits. And he was not unaware of the implications if
the fact that these circuits could now be designed to represent the
operations of logic and arithmetic.

If logic was the formal system that most closely matched the
operations of human reason, and if Boole's truth tables could embody
such a formal system of simulated reasoning, then the use of truth
tables as the "instruction tables" Turing discussed, and with switching
devices like relays to represent the "states" of the machines (or the
cells of the tape), it would be possible to build electrical circuits
that could simulate some of the logical operations of human
thought.

When the digital computer builders got together to plan the future
development of the technology, Shannon was in the thick of it -- and
he didn't hesitate to remind his colleagues that what they were building
was the first step toward artificial intelligence. But during the ten years
immediately following his first breakthrough, Shannon turned to a
different aspect of this new field. His new employer was Bell
Laboratories, and the electrical or electronic communication of
messages was his specialty. AT&T, the foremost communication
company in the world, was the owner of Bell Laboratories, so naturally
the laboratory was interested in supporting Shannon's probes into the
fundamental nature of communication. Shannon was encouraged to
pursue his interesting questions such as: When something is
communicated, what is delivered from one party to another? When a
communication is obscured by noise or encryption, what fails to get
across?

This was the communication part of the communication and control
problem pointed out by Wiener. During the war, working at top-secret

http://www.bell-labs.com/
http://www.bell-labs.com/

defense projects for Bell Laboratories, Shannon was involved in
cryptological work that brought him into contact with Turing. After the
war, Shannon concentrated on describing the nature of the entity they
were communicating and manipulating with all these logical and
mathematical circuits.

At this point, nobody knew, exactly, what information was. Just as he
had found the perfect tool for describing relay circuits, after the war
Shannon wanted to find mathematical tools for precisely defining the
invisible but powerful commodity that these new machines were
processing. He succeeded in finding the descriptive tools he sought, not
in an obscure corner of mathematics, as in the case of Boole's algebra,
but in the fundamental laws governing energy.

Like Turing, Shannon put a surprise finishing touch on a project that
scientists had worked at for centuries. In this case, the quest was not
to understand the nature of symbol systems, but a more pragmatic
concern with the nature of energy and its relation to information.
Although Shannon was specifically looking at the laws underlying the
communication of messages in man-made systems, and generally
interested in the difference between messages and noise, he ended up
dealing with the laws governing the flow of energy in the universe. In
particular, he discovered the secrets of decoding telephone
switching networks, hidden in the work of previous scientists
who had discovered certain laws governing heat energy in
steam engines.

Back when the Industrial Revolution was getting started, and steam-
powered engines were the rage, it became a practical necessity to find
out something about the efficiency of these energy-converting devices.
In the process, it was discovered that something fundamental to the
nature of heat prevents any machine from ever becoming perfectly
efficient. The study of the movement of heat in steam engines became
the science of thermodynamics, given precise expression in 1850 by
Rudolf Clausius, in his two laws of thermodynamics.

The first law of thermodynamics stated that the energy in a closed
system is constant. That means that energy cannot be created or
destroyed in such systems, but can only be transformed. The second
law states, in effect, that part of that unchangeable reservoir of energy
becomes a little less stable every time a transformation takes place.
When you pour hot water into cold water, you can't separate it back
into a hot and a cold glass of water again (without using a lot more
energy). Entropy, meaning "transformation," was the word Claudius
later proposed for that lost quantity of usable energy.

Entropy
Entropy as defined by Clausius is not just something that happens to
steam engines or to glasses of water. It is a universal tendency that is
as true for the energy transactions of the stars in the sky as it is for
the tea kettle on the stove. Because the universe is presumed to be a
closed system, and since Clausius demonstrated that the entropy of

http://physics.hallym.ac.kr/reference/physicist/Ch.html#Clausius

such systems tends to increase with the passage of time, the gloomy
prediction of a distant but inevitable "heat death of the universe" was a
disturbing implication of the second law of thermodynamics. "Heat
death" was what they called it because heat is the most entropic form
of energy.

But the gloomy news about the end of time wasn't the only implication
of the entropy concept. When it was discovered that heat is a measure
of the average motion of a population of molecules, the notion of
entropy became linked to the measure of order or disorder in a system.
If this linkage of such disparate ideas as "heat," "average motion," and
"order of a system" sounds confusing, you have a good idea of how
nineteenth-century physicists felt. For a long time, they thought that
heat was some kind of invisible fluid that was transferred from one
object to another. When it was discovered that heat is way of
characterizing a substance in which the molecules were, on the
average, moving around faster than the molecules in a "cold"
substance, a new way of looking at systems consisting of large
numbers of parts (molecules, in this case) came into being. And this
new way of looking at the way the parts of systems are arranged led,
eventually, to the entropy-information connection.

Because "average motion" of molecules is a statistical measure, saying
something about the amount of heat in a system says something about
they way the parts of that system are arranged. Think about a
container of gas. The system in this case includes everything inside the
container and everything outside the container. The gas is considered
to be hot if the average energy of the molecules inside the container is
higher than the average energy of the molecules outside the container.
Some of the molecules inside the container might, in fact, be less
energetic (cooler) than some of the molecules outside the container --
but on the average, the population of molecules inside are more
energetic than the population of the molecules outside.

There is a certain order to this arrangement -- energetic molecules are
more likely to be found inside the container, less energetic molecules
are more likely to be found outside. If there were no container, the
highly energetic molecules and the less energetic molecules would mix,
and there would be no sharp differentiation between the hot parts and
the cold parts of the system.

A system with high entropy has a low degree of order. A system with
low entropy has a higher degree of order. In a steam engine, you have
the heat in one place (the boiler) and it is dissipated into the cold part
(the condenser). This is a very orderly (low entropy) system in the
sense that anyone can reliably predict in which part of the engine the
hot molecules are likely to be found. But when all the parts of a steam
engine are the same temperature, and the hot and cold molecules are
equally likely to be found in the boiler and the condenser (and hence
the entropy is high), the engine can't do any work.

Another physicist, Boltzmann, showed that entropy is a function of the
way the parts of the system are arranged, compared with the number
of ways the system can be arranged. For the moment, let's forget
about molecules and think about decks of cards. There is a large

number of ways that fifty-two cards can be arranged. When they come
from the factory, every deck of cards is arranged in a definite order, by
suit and by value. With a little bit of thought, anybody can predict
which card is the fifth from the top of the deck. The predictability and
orderliness disappears when the deck is shuffled.

An unshuffled deck of cards has a lower degree of entropy because
energy went into arranging it in an unlikely manner. Less energy is
then required to put the deck into a more probable, less orderly, less
predictable, more highly entropic state: According to the second law of
thermodynamics, all decks of cards in the universe will eventually be
shuffled, just as all molecules will have an equal amount of energy.

James Clerk Maxwell, yet another nineteenth-century scientist,
proposed a paradox concerning this elusive quality called entropy,
which seems to relate such intuitively dissimilar measures as energy,
information, order, and predictability. The paradox became infamous
among physicists under the name "Maxwell's demon." Consider a
container split by a barrier with an opening small enough to pass only
one molecule at a time from one side to another. On one side is a
volume of hot gas, in which the average energy of the molecules is
higher than the average energy of the molecules in the cold side of the
container. According to the second law, the hotter, more active
molecules should eventually migrate to the other side of the container,
losing energy in collisions with slower moving molecules, until both
sides reach the same temperature.

What would happen, Maxwell asked, if you could place a tiny imp at the
molecular gate, a demon who didn't contribute energy to the system,
but who could open and close the gate between the two sides of the
container? Now what if the imp decides to let only the occasional slow-
moving, colder molecule pass from the hot to the cold side when it
randomly approaches the gate? Taken far enough, this policy could
mean that the hot side would get hotter and the cold side would get
colder, and entropy would decrease instead of increase without any
energy being added to the system!

In 1922, a Hungarian student of physics by the name of Leo Szilard
(later to be von Neumann's colleague in the Manhattan project), then
in Berlin, finally solved the paradox of Maxwell's demon by
demonstrating that the demon does indeed need to contribute energy
to the system, but like a good magician the demon does not expend
that energy in its most visible activity -- moving the gate -- but in
what it knows about the system. The demon is a part of the system,
and it has to do some work in order to differentiate the hot and cold
molecules at the proper time to open the gate. Simply by obtaining the
information about molecules that it needs to know to operate the gate,
the demon adds more entropy to the system than it subtracts.

Although Szilard showed implicitly that information and entropy were
intimately connected, the explicit details of the relationship between
these two qualities, expressed in the form of equations, and the
generalization of that relationship to such diverse phenomena as
electrical circuits and genetic codes, were not yet known. It was
Claude Shannon who made information into a technical term,

and that technical term has since changed the popular meaning
of the word.

Another puzzle related to entropy, and the cryptic partial solution to it
proposed in 1945 by another physicist, was a second clue linking it to
information. Quite simply: If the universe tends toward entropy, how
does life, a highly ordered, energy-consuming, antientropic
phenomenon, continue to exist? In a universe flowing toward disorder,
how on earth did one-celled creatures complicate themselves enough
to build a human nervous system?

Quantum physicist Erwin Schrödinger pointed out that life defies the
cosmic energy tide courtesy of our sun. As long as the sun keeps
shining, the earth is not a closed system. Photochemical reactions on
earth capture a tiny fraction of the sun's radiant energy and use it to
complicate things. In his famous "What Is Life?" lecture in 1945,
Schrödinger remarked that "living organisms eat negative energy." The
relationship between negative energy and information, like Boole's
obscure algebra, was just waiting to be found when Shannon started to
wonder how messages manage to maintain their order in a medium
where disorder is often high.

The matter of devising a simple code and reliably transmitting it from
place to place was very important to British cryptographers, and
Shannon had done his own work in cryptography. The prediction of the
behavior of electrical circuits used to transmit messages made of these
codes was another of Shannon's interests. When he put it all
together with a formal examination of how messages can be
distinguished from noise, and found that the very equation he
sought was a variation of the defining equation for entropy,
Claude Shannon happened upon the fact that the universe plays
twenty questions with itself.

The formal foundations of information theory were laid down in two
papers in 1948, and at their core were fundamental equations that had
a definite relationship to Boltzmann's equations relating entropy to the
degree of order in a system. But the general idea behind the equations
was simple enough for Shannon to suggest a game as a way of
understanding the quantitative dimension of coding and
communication.

The game is a mundane version of "twenty questions." In the case of
the English alphabet, it turns out to be a game of "five questions."
Player number one thinks of a letter of the alphabet. Player number
two tries to guess the letter, using only questions like "is it earlier than
L in the alphabetical sequence?" It is a strictly yes-or-no game, in
which only one of two possible answers applies at every move.

Shannon pointed out that it takes a maximum of five questions to
locate any of the thirty symbols necessary for making English
sentences. If the sequence of yes or no decisions needed to specify the
correct letter is converted into a sequence of zeroes and ones or a
sequence of on and off impulses, or any other kind of binary symbol,
you have a code for communicating the alphabet -- which is, in fact,

http://physics.hallym.ac.kr/reference/physicist/Schrodinger.html

the basis of the code used for transmitting teletypewriter messages.

This game can be visualized as a tree structure, where each letter is
the only leaf on a branch that branches off a branch that eventually
branches off a trunk. Or it can be seen as a garden of forking paths,
where each path is a sequence of one-way-or-the-other decisions, and
the location of any endpoint can be coded by specifying the sequence
of decisions along the path. It is also a good way to locate an address
in a computer's memory or to encode an instruction to be placed in
that location. This basic element in this game-tree-code, the
binary decision, was the basis for Shannon's basic measure of
information -- the bit. Whenever computer enthusiasts speak of a
"bit," they are referring to one of those decisions in the garden of
forking paths.

Note that each decision, each bit, reduces the uncertainty of the
situation, whether you are designating turns in a pathway or numbers
in a guessing game or the energy state of molecules in a container. But
what if you were to use a different strategy to guess the right answer?
What if you just named each of the possible letters, one at a time, in a
sequence or randomly? This relates to probability theory, the
mathematical principles governing the random selection of small
samples from large populations.

The relative probability of an event occurring, whether it is the
probability of a molecule being hot or the probability of a symbol being
a specific letter of the alphabet, depends upon the total number of
cases in the population and the frequency of the specified event. If
there are only two cases in the population, a single yes or no decision
reduces the uncertainty to zero. In a group of four, it takes two
decisions to be sure. In a group of trillions, you have to guess a little.
When you are making predictions about such large populations,
averages based on the overall behavior of the population have to
replace precise case-by-case calculations based on the behavior of
individual members of the population.

One of the properties of a statistical average is that it is quite possible
for a population to be characterized by an average value that is not
held by any particular element of the population. If you have a
population consisting of three people, and you know that one is three
feet tall, one five feet tall, and one is six feet tall, you have quite
precise information about that population, which would enable you to
pick out individuals by height. But if all you know is that the average
height of the population is four feet, eight inches, you wouldn't know
anything useful about any one of the three particular individuals.
Whenever a system is represented by an average, some information is
necessarily lost, just as two energy states lose a little energy when
they are brought into equilibrium.

Whenever you move from an average measure to a precise measure,
you have reduced uncertainty about that population. And that
reduction in uncertainty is where the statistical properties that govern
the motions of populations of molecules are connected to the statistical
properties of a binary code, where entropy meets information. To see

how uncertainty can relate to a binary code, think about a game of
twenty questions. If the object of the game is to guess a number
between one and one hundred, and player one asks if the number is
larger than fifty, an answer from player two (no matter if it is yes or
no) reduces player one's uncertainty by one half. Before asking the
question, player one had one hundred possible choices. After asking
that single yes or no question, player one either knows that the
number is greater than fifty or that it is less than fifty.

One of the things Shannon demonstrated in 1948 was that the entropy
of a system is represented by the logarithm of possible combinations of
states in that system -- which is the same as the number of yes-or-no
questions that have to be asked to locate one individual case. Entropy,
as it was redefined by Shannon, is the same as the number of binary
decisions necessary to identify a specific sequence of symbols. Taken
together, those binary decisions, like the answers in the game,
constitute a definite amount of information about the system.

When it comes to arranging molecules, living organisms seem to have
a great deal of information about how to take elementary substances
and turn them into complex compounds. Somehow, living cells manage
to take the hodgepodge of molecules found in their environment and
arrange them into the substances necessary for sustaining life of the
organism. From a disorderly environment, living creatures somehow
create their own internal order. This remarkable property now sounds
suspiciously like Maxwell's demon. The answer, as we now know, is to
be found in the way the DNA molecule arranges its elements -- doing
so in such a way that the processes necessary for metabolism and
reproduction are encoded. The "negative entropy" that Schrodinger
says is the nourishment of all life is information, and Shannon
showed exactly how such coding can be done -- in molecules,
messages, or switching networks.

It has to be said, by the way, that Shannon was reluctant to use the
word "entropy" to represent this measure implied by his equations, but
von Neumann told him to go ahead and use it anyway, because "since
nobody knows what entropy is, in a debate you will be sure to have an
advantage."

Remember that entropy is where Shannon ended up, not where he
started. Hot molecules and DNA were far from his original intention. He
got to the guessing game and the notion of bits and the relationship
between uncertainty and entropy because he looked closely at what a
message really is. How does a signal that conveys information differ
from everything else that happens? How much energy must be put into
broadcasting a voice over the radio to be sure that it will be
understood despite atmospheric interference or static from other
sources? These were the questions that Shannon set out to answer.

Shannon's 1948 publication ("A Mathematical Theory of Information")
presented a set of theorems that were directly related to the
economical and efficient transmission of messages on noisy media, and
indirectly but still fundamentally related to the connection between
energy and information. Shannon's work was a direct answer to an

engineering problem that had not decreased in importance since the
war: how can messages be coded so that they will be reliably
transmitted and received over a medium where a certain amount of
noise is going to garble reception?

Shannon showed that any message can be transmitted with as high a
reliability as one wishes, by devising the right code. The limit imposed
by nature is concerned only with the limit of the communication
channel. As long as there is a channel, no matter how noisy, a
code can be devised to transmit any message with any degree
of certainty. Entropy is a measure of the relationship between the
complexity of the code and the degree of certainty. These theorems
meant a lot to radio and telephone engineers, and made color
television as well as broadcasts from the moon possible, but Shannon
stated them in a way that demonstrated their universality beyond the
domain of electrical engineering.

The key to life itself, in fact, turned out to be a matter of information,
as the world learned five years later, when that young physicist-turned-
biologist who had attended Schrödinger's lecture, Francis Crick, teamed
up with James Watson to decipher the molecular genetic coding of the
DNA helix. Scientifically, and on the level of consciousness, people
seemed to jump rather too quickly to make the transition from an
energy-based metaphor of the universe to an information model. The
rush to generalize information theory to all sorts of scientific areas,
some of them of dubious scientific merit, led Shannon to decry this
"bandwagon effect," remarking that information theory "has perhaps
ballooned to an importance beyond its actual accomplishments. . . .
Seldom do more than a few of nature's secrets give way at one time."

Despite Shannon's disclaimer, information- and communication-
based models have proved to be enormously useful in the
sciences because so many important phenomena can be seen in
terms of messages. Human bodies can be better understood as
complex communication networks than as clockwork-like
machines. The error-correcting codes guaranteed by Shannon's "noisy
channel" theorem are just as useful for genetic control of protein
synthesis as for protocols in a computer network. Shannon's MIT
colleague, Noam Chomsky, has used a similar tool in his exploration of
the "deep structure" of language.

With all these higher-level abstractions, Shannon did not abandon all
thought of the potential of digital computers. Where Wiener saw the
computer as a self controlling mechanism and von Neumann saw a
device with logical as well as mathematical properties, Shannon tended
to think of ENIAC and UNIVAC as information processing machines.

Like Turing and other mathematicians since then, Shannon was
fascinated with the idea that something as sophisticated and essentially
human as chess playing could, in theory, be emulated by some future
version of these devices. In February, 1950, Shannon published "A
Chess Playing Machine" in The Scientific American. Half a decade before
anyone dared to name the endeavor "artificial intelligence research,"

http://www.worldmedia.com/archive/index.htm

Shannon pointed out what a very few people then recognized --
that electronic digital computers could "be adapted to work
symbolically with elements representing words, propositions or
other conceptual entities."

A chess game is a Turing machine. And a universal Turing machine,
given the properly coded rules, ought to be able to play chess.
Shannon pointed out that the way most people would design a machine
to play chess -- to mechanically examine each alternative move and
evaluate it, the so-called brute-force method -- would be virtually
impossible, even on the fastest imaginable computer. He estimated
that a typical chess game has about 10^120 possible moves, so
"A machine calculating one variation each millionth of a second
would require over 10^95 years to decide on its first move!"

This "combinatorial explosion" -- the rapid and overwhelming buildup of
alternatives in any system in which each level leads to two or more
deeper levels -- was another one of those secrets of nature that
Claude Shannon was in the habit of turning up. The explosive
expansion of the number of alternative decisions is a barrier that
confronts any attempt to exhaustively examine a branching structure,
and continues to confront programmers who seek to emulate cognitive
functions by performing searches through problem spaces.

Turing and Shannon were altogether serious in their interest in chess,
because of the complexity of the game in relation to the simplicity of
its rules, and because they suspected that the shortcut needed to
perform this kind of time-consuming search-procedure would also be a
clue to the way brains solved all sorts of problems.

A chess playing program was also interesting because it was a relative
of the kind of informational entities known as automata that von
Neumann and Turing had been toying with. Once again, like Turing's
universal machines, these automata were theoretical devices that did
not exist at that time, but were possible to build, in principle. For
years, Shannon experimented with almost absurdly simple homemade
versions -- mechanical mice that were able to navigate simple mazes.

In 1953, Shannon wrote a paper, "Computers and Automata," in which
he posed questions that continue to be of acute interest to
psychologists as well as computerists. Can a chess playing
computer learn form its mistakes? Is it possible to build a machine
that can diagnose itself and repair its own malfunctions? Can computer
programs ("virtual machines") be created that enable computers to
write their own software to the specifications of the human user? Can
the way human brains process information (known in some hard-core
AI circles as "wetware") ever be effectively simulated by hardware and
software?

In the summer of 1953, while he was working on these ideas, Shannon
hired two temporary laboratory assistants named Minsky and McCarthy,
another pair of prodigies who knew some fancy mathematics and
thought they could do big things with computers. Here were the first

members of the first native generation of computer scientists, the ones
who already knew about electronics and cybernetics and information
theory and brain physiology and were looking for something ambitious
to do with it all. They ended up in the right place when they dug up
Shannon in the midst of Bell Laboratories.

Shannon had long spoken of his suspicion that the future evolution of
more sophisticated computer hardware would make it possible to
construct software capable of simulating some parts of human
cognition. But these younger guys were blatant believers. They were
out to build an intelligence, and didn't mind saying so. McCarthy and
Shannon edited a book on automata, and three years later, in 1956,
Shannon joined Minsky, McCarthy, and an IBM computer researcher,
Nathaniel Rochester, in sponsoring a summer conference at Dartmouth
University, to set goals for this new field. The new field they gathered
to discuss was a branch of science that did not yet have a name, but
which was founded on the assumption that the existence of computers
now made it possible to consider creating an artificial version of the
most complex system known to science -- human intelligence.

It was around 1956 that McCarthy started using the words
"artificial intelligence." The Dartmouth Conference was the
constitutional convention of the artificial intelligence faction, and it was
also the place where two virtually unknown Rand programmers named
Alan Newell and Herbert Simon breezed in from Santa Monica with a
piece of software they wrote with Cliff Shaw. To everyone's
astonishment, it was a program -- the famous Logic Theorist that could
prove theorems from Russell and Whitehead's Principia Mathematica --
that actually did what the rest of them thought they were there to plan
to do.

Hopes were high for the AI rebels in 1956 and 1957. Major efforts were
under way and ambitious goals were in sight. A very few unorthodox
thinkers staked their careers on the conviction that this branch of
computer science, formerly a branch of science fiction, would soon be
seen as more important than anything else humankind had ever
attempted: Minsky remained at MIT and concentrated on the problem
of how knowledge is represented in minds and machines; Newell and
Simon (now a Nobel Laureate) began their long association with one
another and Carnegie-Mellon University, where they concentrated on
the information processing approach to psychology and AI design;
McCarthy created LISP, a language specifically for conducting AI
research, and left MIT to preside over Stanford's AI laboratory.

Claude Shannon went back to his chess playing machines and
continued building the mechanical mice that could learn how to run
simple mazes. In 1956, Robert Fano, the electrical engineering student
who witnessed Norbert Wiener's "Entropy is information!" exclamations
back in the summer of 1947, brought Shannon to MIT from Bell
Laboratories.

His professional standing was so far beyond reproach that his
occasional unicycle excursions through MIT halls, and his reluctance to
lecture or publish frequently, hardly dented Shannon's reputation. In
fact, his reputation had reached such mythological proportions that he

http://www.apl.jhu.edu/%7Ehall/lisp.html
jhopo
Highlight

had to start writing disclaimers. Fame wasn't something he wanted or
needed. By 1960, he didn't even come to the office.

In the 1960s Shannon became interested in the stock market as a real-
world experiment in probability theory, and rumor has it that he didn't
do too badly. He began to seriously extend his analysis of
communications and messages to the English language. Nobody but
Shannon knows the full extent of his discoveries. Robert Fano (who
went on to become the administrative director of Project MAC) recently
said this of Shannon:

There is a significant body of work he did in the 1950s that has never been
printed. He doesn't want someone else to write his papers for him, and he
won't write them himself. It's as simple and as complicated as that. He
doesn't like to teach. He doesn't like giving lectures. His lectures are
jewels, all of them. They sound spontaneous, but in reality they are very,
very carefully prepared.

In the early sixties, one of the extremely few students Shannon
personally took on, another MIT bred prodigy by the name of Ivan
Sutherland, made quite a splash on the computer science scene. By the
mid-1970s, Shannon, now in his sixties, had become a literal gray
eminence. By the early 1980s, he still hadn't stopped thinking about
things, and considering his track record, it isn't too farfetched to
speculate that his most significant discoveries have yet to be published.

In the late 1950s, around the time Shannon began to retreat from
public life, the artificial intelligence pioneers began to stake out
ambitious territories for their laboratories -- goals like automatic
theorem-proving programs, or knowledge-representation languages, or
robotics -- and it began to be possible to dream of computers that
could be used as laboratories for running experiments in new kinds of
AI programs. Then fate put a little pressure on the story once again.

This time, it was not a war, but an implicit threat of war. The space
race and the computer revolution were ready to be launched by 1957,
and the information processing devices pioneered by the World War II
creators of computing were ready to leave the laboratories and begin
to infiltrate the real world. As usual, things started popping when an
MIT professor stumbled onto something big.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Seven:
Machines to Think
With

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Seven:
Machines to Think With
In the spring of 1957, while he continued to carry out the duties of an
MIT researcher and professor, Dr. J.C.R. Licklider noted every task he
did during the day and kept track of each one. He didn't know it then,
but that unofficial experiment prepared the way for the invention of
interactive computing -- the technology that bridged yesteryear's
number crunchers and tomorrow's mind amplifiers.

Licklider's research specialty was psychoacoustics. During World

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

War II, he had explored ways electronics could be applied to
understanding human communications. Specifically, he wanted to learn
how the human ear and brain are able to convert atmospheric
vibrations into the perception of distinct sounds. After the war, MIT
was the center of a number of different attempts to use electronic
mechanisms to model parts of the nervous system -- a movement in
biology and psychology as well as engineering that was inspired by the
work of Wiener and others in the interdisciplinary field of cybernetics.
Licklider was one of the researchers attracted to this paradigm, not
strictly out of the desire to build a new kind of machine, but out of the
need for new ways to simulate the activities of the human brain. This
need, inspired by cybernetics, was extended simultaneously into
engineering and physiology. Computers were the last thing on
Licklider's mind -- until his theoretical models of human perceptual
mechanisms got out of hand.

By the late 1950s, Licklider was trying to build mathematical and
electronic models of the mechanisms the brain uses to process the
perception of sounds. Part of the excitement generated during the early
days of cybernetic research came from the prospect of studying
mechanical models of living organisms to help create theoretical
models of the way those organisms function, and vice-versa. Licklider
thought he might be onto a good idea with an intricate neural model of
pitch perception, but quickly learned, to his dismay, that his
mathematical model had grown too complex to work out by hand in a
reasonable length of time, even using the analog computers that were
then available. And until the mathematical model could be worked out,
there was no hope of building a mechanical model of pitch perception.

The idea of building a mathematical or electronic model was
meant to simplify the task of understanding the complexities of
the brain, like plotting a graph to see the key relationships in a
collection of data. But the models themselves now began to
grow unmanageably complex. Like Mauchly with his
meteorological data, twenty years before, Licklider found he was
spending more and more of his time dealing with the
calculations he needed to do to create his models, which left
less time for what he considered to be his primary occupation --
thinking about what all that information meant. Beneath those
numbers and graphs was his real objective -- the theoretical
underpinnings of human communication.

Although he was primarily interested in how the brain processes
auditory information, he felt that he was spending most of his time
putting things into files or taking them out, as well as managing the
increasing amounts of numerical data he needed to construct the
models he had in mind. Out of curiosity, he wondered if any of his
colleagues had looked into the way scientific researchers spent
their time.

When he couldn't find any time-and-motion studies of information-
shuffling researchers like himself, Licklider decided to keep track of his

own activities as he went through his normal working day. "Although I
was aware of the inadequacy of the sampling," he later wrote, with the
modesty that he is known for among his colleagues, "I served as my
own subject."

It didn't take long to discover that his main occupation, even when he
wasn't keeping records of his behavior, was centered on keeping
records of everything else. Astonishing as it must have seemed to any
self-respecting scientist like himself, his observations revealed that
about 85% of his "thinking" time was actually spent "getting
into a position to think, to make a decision, to learn something I
needed to know. Much more time went into finding or obtaining
information than into digesting it."

Like almost any other experimentalist, he couldn't begin to make sense
of psychoacoustic data until he could see it translated into the form of
graphs. Plotting the graphs took days. Even teaching his assistants how
to plot graphs took hours. As soon as the graphs were finished and he
was able to look at them, the relationships he was seeking became
immediately obvious. It was grossly inefficient and tedious to spend
days plotting graphs that took seconds to interpret.

While he had always thought of interpretation and evaluation as his
most important function as a scientist, Licklider's analysis of his
research behavior showed that most of his tasks were clerical or
mechanical: "searching, calculating, plotting, determining the logical
or dynamic consequences of a set of assumptions or hypotheses,
preparing the way for a decision or an insight. Moreover, my choices of
what to attempt or not to attempt were determined to an
embarrassingly great extent by considerations of clerical feasibility, not
intellectual capacity."

The conclusion he reached, while it doesn't sound so radical today, was
shocking when it occurred to him in 1957. A less modest man might
not have been able to bring himself to face the conclusion: Licklider
decided, on the basis of his informal self-study, that most of the
tasks that take up the time of any technical thinker would be
performed more effectively by machines.

This was a thought that was occurring to one or two other people at
about the same time -- notably Doug Engelbart, out in California. But
because of his association with certain military-sponsored research
projects at MIT in the 1950s, there was an important difference
between Licklider and the others who dreamed of converting computers
into some kind of mind-amplifying tool. This crucial difference was the
fact that Licklider had reached his conclusion not long before
circumstances put him at the center of power in the one
institution capable of sponsoring the creation of an entire new
technology.

At that point in the history of computer technology -- a field in which
Licklider had been only tangentially involved until then -- no

respectable computer scientist would dare suggest that computer
technology ought to be totally revamped so that scientists could use
these machines to help keep track of data and build theoretical models
of the phenomena they were studying. To those who were wild enough
to make such a suggestion -- especially the young MIT computer
mavericks who were founding the field of artificial intelligence around
that time -- the idea might have seemed too obvious and too trivial to
pursue. In any case, the AI founders were more interested in
replacing the scientist than the scientist's file clerk. Licklider,
however, was neither a respectable computer scientist nor a computer
maverick, but a psychologist with some expertise in electronics. And
like any other competent investigator, he followed where the data led
him.

In the late 1950s, Licklider had no real expertise in digital computer
design, and although he knew that only a computer could give him
what he needed, he didn't think that the kinds of computers then
available, and the kinds of things they did, were suitable for building a
sort of "electronic file clerk." He knew that data processing wasn't
what he wanted.

If you were the Census Office, overflowing with information on a couple
of hundred million people, and for some crazy reason you wanted to
find out how many divorced people over sixty lived on farms in the sun
belt, you could use a UNIVAC to perform the sorting and calculating
needed to tell you what you wanted to know. That was data
processing. If you had a payroll for 10,000 employees to calculate
every other Friday and needed to transform time sheets into entries in
a ledger and print up all the checks -- data processing power was just
what you could buy from your local IBM representative.

Data processing involved certain constraints on what could be done
with computers, and constraints on how one went about doing these
things.. Payrolls, mathematical calculations, and census data were the
proper kinds of tasks An arcane process known as "batch processing"
was the proper way to do these things. If you had a problem to solve,
you had to encode your program and the data that the program was
meant to operate upon, usually in one of the two major computer
languages -- FORTRAN and COBOL. The encoded program and data
were converted into boxes full of what had become universally known
as "IBM cards" -- the kind you weren't supposed to spindle, fold, or
mutilate. The cards were delivered to a systems administrator at the
campus "computer center" or the corporate "data processing center."
This specialist was the only one allowed to submit the program to the
machine, and the person from whom you would retrieve your printout
hours or days later.

But if you wanted to plot ten thousand points on a line, or turn a list of
numbers into a graphic model of airflow patterns over an airplane
wing, you wouldn't want data processing or batch processing. You
would want modelling -- an exotic new use for computers that the
aircraft designers were pioneering. All Licklider sought, at first, was a
mechanical servant to take care of the clerical and calculating work
that accompanied model building. Not long after, however, he began to

wonder if computers could help formulate models as well as calculate
them.

When he attained tenure, later that same year, Licklider decided to join
a consulting firm near Cambridge named Bolt, Beranek & Newman.
They offered him an opportunity to pursue his psychoacoustic research
-- and a chance to learn about digital computers.

"BB&N had the first machine that Digital Equipment Company made,
the PDP-1," Licklider recalled in 1983. The quarter-million-dollar
machine was the first of a continuing line of what came to be called, in
the style of the midsixties, "minicomputers." Instead of costing millions
of dollars and occupying most of a room, these new, smaller, powerful
computers only cost hundreds of thousands of dollars, and took up
about the same amount of space as a couple of refrigerators. But they
still required experts to operate them. Licklider therefore hired a
research assistant, a college dropout who was knowledgeable about
computers, an exceptionally capable young fellow by the name of Ed
Fredkin, who was later to become a force in artificial intelligence
research -- the first of many exceptionally capable young fellows who
would be drawn to Licklider's crusade to build a new kind of computer
and create a new style of computing.

Fredkin and others at BB&N had the PDP-1 set up so that Licklider
could directly interact with it. Instead of programming via boxes of
punched cards over a period of days, it became possible to feed the
programs and data to the machine via a high-speed paper tape; it was
also possible to change the paper tape input while the program was
running. The operator could interact with the machine for the first time.
(The possibility of this kind of interaction was duly noted by a few
other people who turned out to be influential figures in computer
history. A couple of other young computerists at MIT, John McCarthy
and Marvin Minsky, were also using a PDP-1 in ways computers weren't
usually used.)

The PDP-1 was primitive in comparison with today's computers,
but it was a breakthrough in 1960. Here was the model builder
that Licklider had first envisioned. This fast, inexpensive,
interactive computer was beginning to resemble the kind of
device he dreamed about back in his psychoacoustic lab at MIT ,
when he first realized how his ability to theorize always seemed
constrained by the effort it took to draw graphs from data.

"I guess you could say I had a kind of religious conversion,"
Licklider admits, remembering how it felt, a quarter of a century ago,
to get his hands on his first interactive computer. As he had suspected,
it was indeed possible to use computers to help build models from
experimental data and to make sense of any complicated collection of
information.

Then he learned that although the computer was the right kind of
machine he needed to build his models, even the PDP-1 was hopelessly
crude for the phenomena he wanted to study. Nature was far too
complicated for 1960-style computers. He needed more memory

components and faster processing of large amounts of calculations. As
he began to think about the respective strengths and deficiencies of
computers and brains, it occurred to him that what he was seeking
was an alternative to the human-computer relationship as it
then existed.

Since the summer of 1956, when they met at Dartmouth to define the
field, several young computer and communication scientists Licklider
knew from MIT had been talking about a vaguely distant future when
machines would surpass human intelligence. Licklider was more
concerned with the shorter-term potential of computer-human
relations. Even at the beginning, he realized that technical thinkers of
every kind were starting to run up against the problems he had started
noticing in 1957. Let the AI fellows worry about ways to build
chess-playing or language translating machines. What he and a
lot of other people needed was an intelligent assistant.

Although he was convinced by his "religious conversion to interactive
computing" -- a phrase that has been used over and over again by
those who participated in the events that followed -- Licklider still knew
too little about the economics of computer technology to see how it
might become possible to actually construct an intelligent laboratory
assistant. Although he didn't know how or when computers would
become powerful enough and cheap enough to serve as "thinking
tools," he began to realize that the general-purpose computer, if it was
set up in such a way that humans could interact with it directly, could
evolve into something entirely different from the data processors and
number crunchers of the 1950s. Although the possibility of creating a
personal tool still seemed economically infeasible, the idea of
modernizing a community-based resource, like a library, began to
appeal to him. He got fired up about the idea Vannevar Bush had
mentioned in 1945, the concept of a new kind of library to fit the
world's new knowledge system.

"The PDP-1 opened me up to ideas about how people and machines
like this might operate in the future," Licklider recalled in 1983, "but I
never dreamed at first that it would ever become economically feasible
to give everybody their own computer." It did occur to him that
these new computers were excellent candidates for the super-
mechanized libraries that Vannevar Bush had prophesied. In
1959, he wrote a book entitled Libraries of the Future,
describing how a computer-based system might create a new
kind of "thinking center."

The computerized library as he first described it in his book did not
involve anything as extravagant as giving an entire computer to every
person who used it. Instead he described a setup, the technical details
of which he left to the future, by which different humans could use
remote extensions of a central computer, all at the same time.

After he wrote the book, during the exhilarating acceleration of
research that began in the post-Sputnik era, Licklider discovered what
he and others who were close to developments in electronics came to

call "the rule of two": Continuing miniaturization of its most important
components means that the cost effectiveness of computer hardware
doubles every two years. It was true in 1950 and it held true in 1960,
and beyond even the wildest imaginings of the transistor
revolutionaries, it was still true in 1980. A small library of books and
articles have been written about the ways this phenomenon has fueled
the electronics revolution of the past three decades. It looks like it will
continue to operate until at least 1990, when personally affordable
computers will be millions of times more powerful than ENIAC.

Licklider then started to wonder about the possibility of devising
something far more revolutionary that even a computerized library.
When it began to dawn on him that this relentlessly exponential rate of
growth would make computers over a hundred times as powerful as
the PDP-1 at one tenth the cost within fifteen years, Licklider began to
think about a system that included both the electronic powers of the
computer and the cortical powers of the human operator. The crude
interaction between the operator and the PDP-1 might be just the
beginning of a powerful new kind of human-computer partnership.

A new kind of computer would have to evolve before this higher level
of human-machine interaction could be possible. The way the machine
was operated by people would have to change, and the machine itself
would have to become much faster and more powerful. Although he
was still a novice in digital computer design, Licklider was familiar with
vacuum tube circuitry and enough of an expert in the hybrid discipline
of "human factors engineering" to recognize that the mechanical
assistant he wanted would need capabilities that would be possible only
with the ultrafast computers he foresaw in the near future.

When he began applying the methods he had been using in human
factors research to the informational and communication activities of
technical thinkers like himself, Licklider found himself drawn to the
idea of a kind of computation that was more dynamic, more of a
dialogue , more of an aid in formulating as well as plotting models.
Licklider set forth in 1960 the specifications for a new species of
computer and a new mode of thinking to be used when operating
them, a specification that is still not fully realized, a quarter of a
century later:

The information processing equipment, for its part, will convert hypotheses
into testable models and then test the models against data (which the
human operator may designate roughly and identify as relevant when the
computer presents them for his approval). The equipment will answer
questions. It will simulate the mechanisms and models, carry out
procedures, and display the results to the operator. It will transform data,
plot graphs, ("cutting the cake" in whatever way the human operator
specifies, or in several alternative ways if the human operator is not sure
what he wants). The equipment will interpolate, extrapolate, and transform.
It will convert static equations or logical statements into dynamic models so
the human operator can examine their behavior. In general, it will carry
out the routinizable, clerical operations that fill the intervals between
decisions.

In addition, the computer will serve as a statistical-inference, decision-
theory, or game-theory machine to make elementary evaluations of
suggested courses of action whenever there is enough basis to support a

formal statistical analysis. Finally, it will do as much diagnosis, pattern
matching, and relevance recognizing as it profitably can, but it will accept a
clearly secondary status in those areas.

The first research in the 1950s into the use of computing equipment for
assisting human control of complex systems was a direct result of the
need for a new kind of air defense command-and-control system.
Licklider, as a human factors expert, had been involved in planning
these early air defense communication systems. Like the few others
who saw this point as early as he did, he realized that the
management of complexity was the main problem to be solved
during the rest of the twentieth century and beyond. Machines
would have to help us keep track of the complications of
keeping global civilization alive and growing. And humans were
going to need new ways of attacking the big problems that
would result form our continued existence and growth.

Assuming that survival and a tolerable quality of existence are the most
fundamental needs for all sane, intelligent organisms, whether they are
of the biological or technological variety, Licklider wondered if the best
arrangement for both the human and the human-created symbol-
processing entities on this planet might not turn out to be neither a
master-slave relationship nor an uneasy truce between competitors,
but a partnership.

Then he found the perfect metaphor in nature for the future capabilities
he had foreseen during his 1957-1958 "religious conversion" to
interactive computing and during those 1958-1960 minicomputer
encounters that set his mind wandering through the informational
ecology of the future. The newfound metaphor showed him how to
apply his computer experience to his modest discovery about how
technical thinkers spend their time. The idea that resulted grew into a
theory so bold and immense that it would alter not only human history
but human evolution, if it proved to be true.

In 1960, in the same paper in which he talked about machines that
would help formulate as well as help construct theoretical models,
Licklider also set forth the concept of the kind of human-computer
relationship that he was later to be instrumental in initiating:

The fig tree is pollinated only by the insect Blastophaga grossorum. The
larva of the insect lives in the ovary of the fig tree, and there it gets its
food. The tree and the insect are thus heavily interdependent: the tree
cannot reproduce without the insect; the insect cannot eat without the
tree; together, they constitute not only a viable but a productive and
thriving partnership. This cooperative "living together in intimate
association, or even close union, of two dissimilar organisms" is called
symbiosis.

"Man-computer symbiosis" is a subclass of man-machine systems.
There are many man-machine systems. At present, however, there are no

man-computer symbioses. . . . The hope is that, in not too
many years, human brains and computers will be
coupled together very tightly, and that the resulting
partnership will think as no human being has ever

thought and process data in a way not approached by
the information-handling machines we know today.

The problems to be overcome in achieving such a partnership were
only partially a matter of building better computers and only partially a
matter of learning how minds interact with information. The most
important questions might not be about either the brain or the
technology, but about the way they are coupled.

Licklider, foreseeing the use of computers as tools to build better
computers, concluded that 1960 would begin a transitional phase in
which we humans would begin to build machines capable of learning to
communicate with us, machines that would eventually help us to
communicate more effectively, and perhaps more profoundly, with one
another.

By this time, he had strayed far enough off the course of his
psychoacoustic research to be seduced by the prospect of building the
device he first envisioned as a tool to help him make sense of his
laboratory data. Like Babbage who needed a way to produce accurate
logarithm tables, or Goldstine, who wanted better firing tables, or
Turing, who wanted a perfectly definite way to solve mathematical and
cryptological problems, Licklider began to move away from his
former goals as he got caught up in the excitement of creating
tools he needed.

Except Licklider wasn't an astronomer and tinkerer like Babbage, a
ballistician like Goldstine, or a mathematician and code-breaker like
Turing, but an experimental psychologist with some practical electronic
experience. He had set out to build a small model of one part of
human awareness -- pitch perception -- and ended up dreaming about
machines that could help him think about models.

As other software visionaries before and after him knew very well,
Licklider's vision, as grandiose as it might have been, wasn't enough in
itself to ensure that anything would ever happen in the real world. An
experimental psychologist, even an MIT professor, is hardly in a
position to set armies of computer engineers marching toward an
interactive future. Like von Neumann and Goldstine meeting on the
railroad platform at Aberdeen, or Mauchly and Eckert encountering
each other in an electronics class at the Moore School, Licklider
happened upon his destiny through accidental circumstances, because
of the time he spent at a place called "Lincoln Laboratory," an MIT
facility for top-secret defense research, where he was a consultant
during a critical transition period in the history of information
processing.

It was his expertise in the psychology of human-machine interaction
that led Licklider to a position where he could make big things out of
his dreams. In the early and mid 1950s, MIT and IBM were involved in
building what were to be the largest computers ever built, the IBM
AN/FSQ-7, as the control centers of a whole new continental air
defense system for the United States. SAGE (Semi-Automatic Ground
Environment) was the Air Force's answer to the new problem of

potential nuclear bomber attack. The computers weighed three
hundred tons, took up twenty thousand feet of floor space, and
were delivered in eighteen large vans apiece. Ultimately, the Air
Force bought fifty-six of them.

MIT set up Lincoln Laboratory in Lexington, Massachusetts, to design
SAGE. At the other end of the continent, System Development
Corporation in Santa Monica (the center of the aircraft industry) was
founded to create software for SAGE. Some of the thorniest problems
that were encountered on this project had to do with devising ways to
make large amounts of information available in human-readable form,
quickly enough for humans to make fast decisions about that
information. It just wouldn't do for your computers to take three days
to evaluate all the radar and radio-transmitted data before the Air
Defense Command could decide whether or not an air attack was
underway.

Some of the answers to these problems were formulated in the
"Whirlwind" project at the MIT computing center, where high-speed
calculations were combined with computer controls that resembled
aircraft controls. Other answers came from specialists in human
perception (like Licklider), who devised new ways for computers to
present information to people. With the exception of the small crew of
the earlier Whirlwind project, SAGE operators were the first computer
users who were able to see information on visual display screens;
moreover, operators were able to use devices called "lightpens" to alter
the graphic displays by touching the screens. There was even a
primitive decision-making capacity built into the system: the computer
could suggest alternate courses of action, based on its model of the
developing situation.

The matter of display screens began to stray away from electronics and
into the area of human perception and cognition which was Licklider's
cue to join the computer builders. But even before Lincoln Laboratory
was established in 1953-1954, Licklider had been consulted about the
possibility of developing a new technology for displaying computer
information to human operators for the purpose of improving air
defense capabilities. Undoubtedly, the seeds of his future ideas
about human-computer symbiosis were first planted when he
and other members of what was then called "the presentation
group" considered the kinds of visual displays air defense
command centers would need.

The presentation group was where he first became acquainted with
Wesley Clark, one of MIT's foremost computer builders. Clark had been
a principle designer of Whirlwind, the most advanced computer system
to precede the SAGE project. Whirlwind, the purpose of which was to
act as a kind of flight simulator, was in many ways the first hardware
ancestor of the personal computer, because it was designed to be
operated by a single "test pilot." It was also used for modeling
aerodynamic equations. While it was only barely interactive in the
sense that Licklider desired, Whirlwind was the first computer fast
enough to solve aerodynamic equations in "real time" -- as the event

that was being modeled was actually happening. Real-time
computation was not only a practical necessity for the increasingly
complicated job of designing high-speed jet aircraft; it was a necessary
prerequisite for creating the guidance systems of rockets, the
technological successors to jet aircraft.

Ironically, by the time SAGE became fully operational in 1958, the
entire concept of ground-based air defense against bomber attack had
been made obsolete on one shocking day in October, 1957, when a
little beeping basketball by the odd name of "Sputnik" jolted the
American military, scientific, and educational establishments into a
frenzy of action. The fact that the Russians could put bombs in orbit
set off the most intensive peacetime military research program in
history. When the Soviets repeated their triumph by putting Yuri
Gagarin into space, a parallel impetus started the U.S. manned space
effort on a similar course.

In the same way that the need for ballistics calculations indirectly
triggered the invention of the general-purpose digital computer, the
aftermath of Sputnik started the development of interactive computers,
and eventually led directly to the devices now known as personal
computers. Just as von Neumann found himself in the center of
political-technological events in the ENIAC era, Licklider was drawn into
a central role in what became known as "the ARPA era."

The "space race" caused a radical shakeup in America's defense
research bureaucracy. It was decided at the highest levels that one of
the factors holding up the pace of space-related research was the old,
slow way of evaluating research proposals by submitting them for
anonymous review by knowledgeable scientists in the field (a ritual
known as "peer review" that is still the orthodox model for research
funding agencies).

The new generation of Camelot-era whiz kids from the think tanks,
universities, and industry, assembled by Secretary McNamara in the
rosier days before Vietnam, were determined to use the momentum of
the post-Sputnik scare to bring the Defense Department's science and
technology bureaucracy into the space age. Something had to be done
to streamline the process of technological progress in fields vital to the
national security. One answer was NASA, which grew from a tiny sub-
agency to a bureaucratic, scientific, and engineering force of its own.
And the Defense Department created the Advanced Research Projects
Agency, ARPA. ARPA's mandate was to find and fund bold
projects that had a chance of advancing America's defense-
related technologies by orders of magnitude -- bypassing the
peer review process by putting research administrators in direct
contact with researchers.

Because of their involvement with previous air defense projects, a few
of Licklider's friends from Lincoln, like Wesley Clark, were involved in
the changeover to the fast-moving, forward-thinking, well funded,
results-oriented ARPA way of doing things. Clark designed the TX-0
and TX-2 computers at MIT and Lincoln. The first of these machines
became famous as the favorite tool of the "hackers" in "building 26,"

who later became the legendary core of Project MAC. The second
machine was designed expressly for advanced graphic display research.

Graphic displays were esoteric devices in 1960, known only to certain
laboratories and defense facilities. Aside from the PDP-1, almost every
computer displayed information via a teletype machine. But there was
an idea floating around Lincoln that SAGE-like displays might be
adapted to many kinds of computers, not just the big ones used to
monitor air defenses. By 1961, the psychology of graphic displays had
become something of a specialty for Licklider. Between BB&N and
Lincoln, he was spending more time with electrical engineers than with
psychologists.

Through his computer-oriented colleagues, Licklider became acquainted
with Jack Ruina, director of ARPA in the early 1960s. Ruina wanted to
do something about computerizing military command and control
systems on all levels -- not just air defense -- and wanted to set up a
special office within ARPA to develop new information processing
techniques. ARPA's goal was to leapfrog over conventional research and
development by funding attempts to make fundamental breakthroughs.
And Licklider's notion of creating a new kind of computer capable of
directly interacting with human operators via a keyboard and a display
screen interface (instead of relying on batch processing or even paper-
tape input) convinced Ruina that the minority of computer researchers
Licklider was talking about might just lead to such a possible
breakthrough.

"I got Jack to see the pertinence of interactive computing, not only to
military command and control, but to the whole world of day-to-day
business," Licklider recalls. "So, in October, 1962 I moved into the
Pentagon and became the director of the Information Processing
Techniques Office." And that event, as much as any other development
of that era, marked the beginning of the age of personal computing.

The unprecedented technological revolution that began with the post-
Sputnik mobilization and reached a climax with Neil Armstrong's first
step on the moon a little more than a decade later was in a very large
part made possible by a parallel revolution in the way computers were
used. The most spectacular visual shows of the space age were
provided by the enormous rockets. The human story was concentrated
on the men in the capsules atop the rockets. But the unsung heroics
that ensured the success of the space program were conducted by men
using new kinds of computers.

Remember the crew at mission control, who burst into cheers at a
successful launch, and who looked so cool nineteen hours later when
the astronaut and the mission depended on their solutions to
unexpected glitches? When the bright young men at their computer
monitors were televised during the first launches from Cape Canaveral,
the picture America saw of their working habitat reflected the results of
the research Licklider and the presentation group had performed. After
all, the kinds of computer displays you need for NORAD (North
American Air Defense Command) aren't too different from the kind you
need for NASA -- in both cases, groups of people are using computers
to track the path of multiple objects in space. NASA and ARPA shared

results in the computer field -- a kind of bureaucratic cooperation that
was relatively rare in the pre-Sputnik era.

Because the Russians appeared to be far ahead of us in the
development of huge booster rockets, it was decided that the United
States should concentrate on guidance systems and ultralight (i.e.,
ultraminiature) components for our less powerful rockets -- a policy
that was rooted in the fundamental thinking established by the ICBM
committee a few years back, in the von Neumann days. Therefore the
space program and the missile program both required the rapid
development of very small, extremely reliable computers.

The decision of the richest, most powerful nation in history to put a
major part of its resources into the development of electronic-based
technologies happened at an exceptionally propitious moment in the
history of electronics. The basic scientific discoveries that made the
miniaturization revolution possible -- the new field of semiconductor
research that produced the transistor and then the integrated circuit --
made it clear that 1960 was just the beginning of the rapid evolution of
computers. The size, speed, cost, and energy requirements of the basic
switching elements of computers changed by orders of magnitude when
electron tubes replaced relays in the late 1940s, and again when
transistors replaced tubes in the 1950s, and now integrated circuits
were about to replace transistors in the 1960s. In the blue-sly labs,
where the engineers were almost outnumbered by the dreamers, they
were even talking about "large-scale integration."

When basic science makes breakthroughs at such a pace, and
when technological exploitation of those discoveries is so
deliberately intensified, a big problem is being able to envision
what's possible and preferable to do next. The ability to see a long
range goal, and to encourage the right combination of boldness and
pragmatism in all the subfields that could contribute to achieving it,
was the particular talent that Licklider brought onto the scene. And
with Licklider came a new generation of designers and engineers who
had their sights on something the pre-Sputnik computer orthodoxy
would have dismissed as science fiction. Suddenly, human-computer
symbiosis wasn't an esoteric hypothesis in a technical journal,
but a national goal.

When Licklider went to ARPA, he wasn't given a laboratory, but an
office, a budget, and a mandate to raise the state of the art of
information processing. He started by supporting thirteen different
research groups around the country, primarily at MIT; System
Development Corporation (SDC); the University of California at
Berkeley, Santa Barbara, and Los Angeles; USC; Rand; Stanford
Research Institute (now SRI International); Carnagie-Mellon University;
and the university of Utah. And when his office decided to support a
project, that meant providing thirty or forty times the budget that the
researchers were accustomed to, along with access to state-of-the-art
research technology and a mandate to think big and think fast.

A broad range of new capabilities that Licklider then called

"interactive computing" was the ultimate goal, and the first step
was an exciting new concept that came to be known as time-
sharing. Time-sharing was to be the first, most important step in the
transition from batch processing to the threshold of personal computing
(i.e., one person to one machine). The idea was to create computer
systems capable of interacting with many programmers at the same
time, instead of forcing them to wait in line with their cards or tapes.

Exploratory probes of the technologies that could make time-sharing
possible had been funded by the Office of Naval Research and Air Force
Office of Scientific Research before ARPA stepped in. Licklider beefed
up the support to the MIT Cambridge laboratory where AI researchers
were working on their own approach to "multi-access computing."
Project MAC, as this branch became known, was the single node in the
research network where AI and computer systems design were, for a
few more years, cooperative rather than divergent.

MAC generated legends of its own, from the pioneering AI research of
McCarthy, Minsky, Papert, Fredkin, and Weizenbaum, to the weird new
breed of programmers who called themselves "hackers," who held late
night sessions of "Spacewar" with a PDP-1 they had rigged to fly
simulated rockets around an ocilloscope screen and shoot dots of light
at one another. MAC was one of the most important meeting grounds
of both the AI prodigies of the 1970s and the software designers of the
1980s. By the end of the ARPA-supported heyday, however, the AI
people and the computer systems people were no longer on the same
track.

One of Licklider's first moves in 1962-1963 was to set up an MIT and
Bolt, Beranek and Newman group in Massachusetts to help Systems
Development Corporation in Santa Monica in producing a transistorized
version of the SAGE-based time-sharing prototypes, which were based
on the old vacuum tube technology. The first step was to get a
machine to all the researchers that was itself interactive enough that it
could be used to design more interactive versions -- the
"bootstrapping" process that became the deliberate policy of Licklider
and his successors. The result was that university laboratories and
think tanks around the country began to work on the components of a
system that would depend on engineering and software breakthroughs
that hadn't been achieved yet.

The time-sharing experience turned out to be a cultural as well
as a technological watershed. As Licklider had predicted, these
new tools changed the way information was processed, but they
also changed the way people thought. A lot of researchers who
were to later participate in the creation of personal computer
technology got their first experience in the high-pressure art and
science of interactive computer design in the first ARPA-funded time-
sharing projects.

One of the obstacles to achieving the kind of interactive computing that
Licklider and his growing cadre of "converts" envisioned lay in the
slowness and low capacity of the memory component of 1950-style
computers; this hardware problem was solved when Jay Forrester,

director of the Whirlwind project, came up with "magnetic core
memory." The advent of transistorized computers promised even
greater memory capacity and faster access time in the near future. A
different problem, characterized by the batch-processing bottleneck,
stemmed from the way computers were set up to accept input from
human operators; a combination of hardware and software innovations
were converging on direct keyboard-to-computer input.

Another one of the obstacles to achieving the overall goal of interactive
computing lay not in the way computer processed information -- an
issue that was addressed by the time-sharing effort -- but the primitive
way computers were set up to display information to human operators.
Lincoln Laboratory was the natural place to concentrate the graphics
effort. Another graphics-focused group was started at the University of
Utah. The presentation group veterans, expanded by the addition of
experts in the infant technology of transistor-based computer design,
began to work intensively on the problem of display devices.

Licklider remembers the first official meeting on interactive graphics,
where the first wave of preliminary research was presented and
discussed in order to plan the assault on the main problem of getting
information from the innards of the new computers to the surface of
various kinds of display screens. It was at this meeting, Licklider
recalls, that Ivan Sutherland first took the stage in a spectacular
way.

"Sutherland was a graduate student at the time," Licklider remembers,
"and he hadn't been invited to give a paper." But because of the
graphics program he was creating for his Ph.D. thesis, because he was
a protégé of Claude Shannon, and because of the rumors that he was
just the kind of prodigy ARPA was seeking, he was invited to the
meeting. "Toward the end of one of the last sessions," according to
Licklider, "Sutherland stood up and asked a question of one of the
speakers." It was the kind of question that indicated that this unknown
young fellow might have something interesting to say to this high-
powered assemblage.

So Licklider arranged for him to speak to the group the next day: "Of
course, he brought some slides, and when we saw them everyone in
the room recognized his work to be quite a lot better than what had
been described in the formal session." Sutherland's thesis, a program
developed on the TX-2 at Lincoln, demonstrated an innovative way to
handle computer graphics -- and a new way of commanding the
operations of computers. He called it Sketchpad, and it was clearly
evident to the assembled experts that he had leaped over their years
of research to create something that even the most ambitious of them
had not yet dared.

Sketchpad allowed a computer operator to use the computer to create,
very rapidly, sophisticated visual models on a display screen that
resembled a television set. The visual patterns could be stored in the
computer's memory like any other data, and could be manipulated by
the computer's processor. In a way, this was a dramatic answer to
Licklider's quest for a fast model-builder. But Sketchpad was much
more than a tool for creating visual displays. It was a kind of

http://www.kzoo.edu/%7Eabrady/CS400/bioW96/soulier.html

simulation language that enabled computers to translate abstractions
into perceptually concrete forms. And it was a model for totally new
ways of operating computers; by changing something on the display
screen, it was possible, via Sketchpad, to change something in the
computer's memory.

"If I had known how hard it was to do, I probably wouldn't have done
it," Alan Kay remembers Sutherland saying about his now-legendary
program. Not only was the technical theory bold, innovative, and
sound, but the program actually worked. With a lightpen, a
keyboard, a display screen, and the Sketchpad program running
on the relatively crude real-time computers available in 1962,
anyone could see for themselves that computers could be used
for something else beside data processing. And in the case of
Sketchpad, seeing was truly believing.

When he left ARPA in 1964, Licklider recommended Sutherland as the
next director of the IPTO. "I had some hesitance about recommending
someone so young," remembers Licklider, "but Bob Sproull, Ruina's
successor as ARPA director, said he had no problem with his youth if
Sutherland was really as bright as he was said to be." By that time,
Sutherland, still in his early twenties, had established a track record for
himself doing what ARPA liked best -- racing ahead of the technology
to accomplish what the orthodoxy considered impossible or failed to
consider altogether.

When Sutherland took over, the various time-sharing, graphics, AI,
operating systems, and programming language projects were getting
into full swing, and the office was growing almost as fast as the
industries that were spinning off the space-age research bonanza.
Sutherland hired Bob Taylor, a young man from the research funding
arm of NASA, to be his assistant, and ultimately his successor when he
left IPTO in 1965. Licklider went to the IBM research center in 1964,
and then back to MIT to take charge of Project MAC in 1968.

In 1983, over a quarter of a century since the spring day he decided to
observe his own daily activities, Licklider is still actively counseling
those who build information processing technologies. After three
decades of direct experience with "the rule of two," he is not sure that
information engineers have even approached the physical limits of
information storage and processing.

One thing scientists and engineers know now that they didn't
know when he and the others started, Licklider points out, is
that "Nature is very much more hospitable to information
processing than anybody had any idea of in the 1950s. We
didn't realize that molecular biologists had provided an
existence proof for a fantastically efficient, reliable, information
processing mechanism -- the molecular coding of the human
genetic system. The informational equivalent of the world's
entire fund of knowledge can be stored in less than a cubic
centimeter of DNA, which tells us that we haven't begun to

approach the physical limits of information processing
technology."

The time-sharing communities, and the network of communities that
followed them, were part of another dream -- the prospect of
computer-mediated communities throughout the world, extending
beyond the computer experts to thinkers, artists, and business people.
Licklider believes it is entirely possible that the on-line, interactive
human-computer community he dreamed about will become
technologically feasible sometime within the next decade. He knew all
along that the frameworks of ideas and the first levels of hardware
technology achieved in the 1960s and 1970s were only the foundation
for a lot of work that remained to be done.

When the bootstrapping process of building better, cheaper,
experimental interactive information processing systems intersects with
the rising curve of electronic capabilities, and the dropping curve of
computational costs, it will become possible for millions, rather than a
thousand or two, to experience the kind of information environment the
ARPA-sponsored infonauts knew.

In the early 1980s, millions of people already own personal computers
that will become obsolete when versions a hundred times as fast with a
thousand times the memory capacity come along at half of today's
prices. When tens of millions of people get their hands on powerful
enough devices, and a means for connecting them, Licklider still thinks
the job will only be in its beginning stages.

Looking toward the day when the "intergalactic network" he speculated
about in the mid sixties becomes feasible, he remains convinced that
the predicted boost in human cultural capabilities will take place, but
only after enough people use an early version of the system to think up
a more capable system that everybody can use: "With a large enough
population involved in improving the system, it will be easier for new
ideas to be born and propagated," he notes, perhaps remembering the
years when interactive computing was considered a daring venture by a
bunch of mavericks. The most significant issue, he still believes, is
whether the medium will become truly universal.

"What proportion of the total population will be able to join that
community? That's still the important question," Licklider
concludes, still not sure whether this new medium will remain
the exclusive property of a smaller group who might end up
wielding disproportionate power over others by virtue of their
access to these tools, or whether it will become the property of
the entire culture, like literacy.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Eight:
Witness to History:
The Mascot of Project
Mac

http://www.rheingold.com/texts/tft/index.html

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Eight:
Witness to Software History: The Mascot
of Project MAC
When he tried the doorknob and found it unlocked, then opened the door
to Building 26 and poked his head into a room full of weirdos having a
high old time with candy bars and computer programs, David Rodman
knew he had discovered something. The year was 1960. David Rodman
was ten years old. And 1960 was still at least four years too early for
weird people to be anything but a rarity, even on college campuses.

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

It turned out that these pasty-faced, hollow-eyed, jargon-
spewing, insanely cackling young men were the first, founding
generation of dropout programming wizards to call themselves
"hackers," and Building 26 was where the hotshot hired
programmers of MIT's artificial intelligence Project MAC were
caged until they all moved to the ninth floor of 545 Technology
Square, in the early sixties.

Technology Square was MIT's space-age temple of sci-tech. The
geographical move from outpost to the pinnacle of the technohierarchy
reflected an elevation in the importance of the whole field of man-
machine systems. MAC was set up originally by Licklider, later
administered at various times by Fano, Minsky, and Papert, and the
ambiguity about the meaning of the acronym was deliberate. On the
level of the hackers' employers, it meant both "machine-aided
cognition" and "Multi-access computing," because in the early
1960s computer system design and AI research had not yet parted
ways.

Down in Building 26, where the dirty work went on, where this motley
group of exceptionally gifted programmers got their fingers into the
logical guts of machines and made them do their bidding, they were
Maniacs And Clowns, Men Against Computers, and numerous
unprintable variations. They were the unruly but indispensable hired
craftsmen of the projects directed by the likes of McCarthy and Minsky
and funded by Licklider -- the ones who built the software probes their
employers launched into the frontiers of machine intelligence.

At the moment David walked in, a young man named Richard
Greenblatt, who lived on the stereotypical hacker diet of soft drinks,
candy bars, and Rolaids, and who didn't stop to sleep, much less to
wash or change clothing, was explaining to a circle of awed admirers,
which included some of the computer scientists who had hired him,
how he intended to write a chess playing program good enough to beat
a human. Greenblatt's thesis advisor, Marvin Minsky, tried to
discourage Greenblatt, telling him there was little hope of making
progress in chess playing software.

Six years after he first stumbled upon the inhabitants of building 26,
sixteen-year-old David Rodman, by now a dropout, acidhead, and
professional AI programmer of his own, albeit smaller, repute, was in
the group that watched Greenblatt's "MacHack" program demolish
Hubert Dreyfus, the number one critic of the whole AI field, in a much-
heralded and highly symbolic game of chess. The MacHack versus
Dreyfus duel has become one of the hacker legends, and MacHack
became the first program to be granted honorary membership in the
American Chess Federation.

The Dreyfus chess match was only one of several historic moments in
AI history that David witnessed from his vantage point of mascot, then
apprentice, then full-fledged hired hacker, during the heyday of MAC,
between 1960 and 1967. He was there when his motley colleagues
began to build the programming and operating systems for the TX-0

and PDP-1 computer hardware, thus establishing the first software
thrust into the age of interactive computing. David was also there
when Joseph Weizenbaum, to his later regret unveiled ELIZA, probably
the most widely quoted and widely misunderstood program in history --
the program that seems to be an uncannily perceptive psychiatrist, but
is actually a programmer's semantic trick.

David came upon the hackers through a mixture of mischief and
happenstance. He was one of those prodigies who was angry about
having a brain like his trapped for another eight years in the body of a
child. Since he was six, he had been an exceptional musician, but he
gave up the piano at ten because he despised performing for adults. He
was a loner, a wanderer, a looker through doorways, an urban
spelunker -- a snoop, but not a thief, unless you consider knowledge of
how to find your way through a complicated system as a stealable
property. By the age of fifteen, David and his friends could find their
way into any building in the MIT complex, via the system of
underground utility tunnels.

Wandering through the halls of MIT, where his father worked in the
medical school, was one of his favorite pastimes. He liked to try doors
and see what was behind the unlocked ones. When he cast his eyes on
those strange guys gathered around an odd-looking television set with
wires coming out of it, and then joined them at a game called
"Spacewar," using a control panel made out of a cigar box, and nobody
seemed to notice that he was ten years old -- David knew he had
found his new intellectual home.

"They treated me with some subtlety. I think it was a kind of
recognition. They had all been through it, but they weren't about to tell
me anything before I figured it out for myself," David recalled, twenty
years later. He just sat down and there was a keyboard and someone
got him started, and although they were the first people he had met
who didn't make a fuss over his intelligence, they noticed how quick he
picked it up, all right.

After David returned a few times, and demonstrated his ability to find
his way around the computer, the hackers made him a mascot, and
when he was a full-blooded initiate ("when they started calling me
'Rodman' instead of 'hey, kid'"), they started giving him small tasks in
machine language, eventually showing him tricks in the sexy new
programming language known as LISP invented specifically for AI
programmers by John McCarthy, one of the project's founders.

Marvin Minsky's secretary took a liking to this wiseass ten-year-old
who seemed to take to programming as some kids take to chess or
tennis or ballet, and Minsky, who had always been the hackers' patron
in MIT computer circles, let David use his password.

Today, having grown up through the early days of the hackers and AI
research, the ARPAnet years, the consulting contracts and security
clearances, the regular escalation of his income, and the transformation
of the social status of computer programmers from weirdo outsiders to
millionaire culture heroes, David Rodman is the president of a
microcomputer software company whose primary product is a system

of programs he wrote himself. His personal odyssey from the inner
sanctums of AI hackdom to the rough-and-tumble capitalism of the
microcomputer industry is a kind of capsule history of the whole
strange journey of interactive computing from laboratory curiosity to
home appliance.

But like many others who are now in their middle thirties and who
didn't wear suits and carry briefcases, the early history was colorful
and not a little painful: "At the age of ten, I was like a coiled spring
inside -- lonely, uptight, angry, cynical. I was unable to balance my
intelligence against the rest of the world. Then suddenly, here were
people not unlike myself, who showed me a device that would respond
to me when I sat down to program it. Those people knew what was
happening to me, and when I began programming, they encouraged
it."

MIT, to begin with, was the engineers' school of engineers' schools,
where the undergraduates hold an annual "ugliest man on campus"
contest -- an unashamed, self-proclaimed, national haven for
supernerds. The campus population was primarily composed of the
people from all the high schools in the country who stayed home and
learned integral calculus or built ham radios while everybody else was
at the sock hop. Amid all this self-styled rejection of conventional
youth culture and the atmosphere of cultivated unfashionability,
computer obsessives were considered oddballs even by the
other outcasts. Their standards were entirely their own. They and
their computers, and a few people in ARPA, were the only ones who
knew that the top hackers were really the insiders. Although they were
outcasts from the wider society, from their fellow techies, and even
from most other computer scientists, they happened to be the people
who were creating the future of computing -- the first time-sharing
systems.

They were having so much fun with what they all knew to be the hot
technology of the future that they seemed to deliberately encourage
their unappetizing image. You don't just barge in and make yourself a
hacker. You've gotta hack. And that means making a computer do
things its manufacturers never expected it to do. (This kind of
programming is known among hackers as "black magic.") It also meant
surviving what the other hackers could do to the results of all your
work if you weren't clever enough to prevent them.

There was a matter of intellectual style. Boldness and speed and
raw power were as important as (critics of hackers would say
more important than) elegance and efficiency when it came to
"cutting code" (writing the detailed machine language or high-level
language lists of instructions that make programs do what computer
users want them to do.). One common comeback when an
outsider asked what "hacker" meant was "somebody who makes
furniture with an axe." Orthodox programming style was hardly de
rigeur in this crowd. The challenge was to think of a clever way to do
something that most normal computer experts would do some other

way or not at all. The performance standards were idiosyncratic and
subtle, but all-important. These people judged each other by criteria
that the rest of the world didn't even understand, and the hackers
didn't mind keeping it that way.

They were other kinds of outcasts besides social outcasts, self-selected
or otherwise. Their values were entirely their own: academic or
commercial success was too trivial to be considered a driving
motivation; the opportunity to work with like-minded colleagues on
state-of-the-art equipment was paramount. They had their own
culture, their own ethic, even their own dialect. The eighteen-year-old
MIT dropouts David Rodman wanted to emulate were distinguished
from the hippies and radicals they superficially resembled because they
all happened to have a talent that was particularly valued in those
days, and still is -- the ability to write code that makes computers
useful to nonprogrammers.

While all their former classmates were on to their doctorates and
assistant professorships and corporate research laboratories, the misfits
suddenly found their conventionally successful peers, at a job where
they weren't relegated to working out a payroll system or an airline
reservation service. The hackers knew, even if nobody else did, that
they -- and not IBM, or even their straighter "FORTRAN type"
colleagues in computer science -- were the test pilots of the
computational frontier, pushing the limits of what could be done with
each fresh generation of hardware.

Their mandate was to dream up new things for computers to do,
and in the process what they did was invent a whole new
computer system and computer-oriented society, a technology
and social order in which their own little fraternity of ex-
outsiders, and not the conventional computer types, were
privileged to know the inner mysteries. When the rest of the world
caught up with them, they knew they would be on to something even
more mysterious to the outsider and more exciting to the hacker. None
of them would deny the charges of addiction. Some of the same people
who were in that room when David walked in, almost a quarter of a
century ago, are still sitting in front of a computer terminal, somewhere
on the upper floors of 545 Technology Square.

Spacewar

Their superiors were smart enough to know that the best of the
hackers would come up with amazing things if they were left to
their own devices. Spacewar, which spread from MIT to other
campus computer centers, was one of the rites of passage and defining
characteristics of any den of hackers. It was invented by a MAC hacker
named Russell, known as "Slug", and was perfected in a communal
effort by generations, and it survived wherever it sprouted, like some
antibiotic resistant organism, because every computer laboratory
manager in the country learned that productivity dove when
Spacewar was banned and shot back up when the game was

reinstated.

It was Spacewar that influenced Nolan Bushnell to create, over a
decade later, a much simpler version called Pong, a commercial
venture that created the first incarnation of Atari Corporation and a
billion-dollar video game industry. Before Pong succeeded, however,
Bushnell had failed to get people interested in a more complex game, a
more direct derivation of Spacewar. But in those days, the people who
put quarters into video machines at bars and arcades hadn't yet been
educated in their video game sensibilities by the Space Invaders and
Pac-Man phenomena of the late 1970s and early 1980s.

But fun and games were only part of the fun and games. One of the
things the hackers were building when David arrived was the software
for one of the first time-sharing systems. They were writing a time-
sharing operating system that they intended to use to create the
greatest hacks, the biggest pranks, the most amazing demonstrations
of programming virtuosity in hacker history. The fact that they were
pioneering a whole new way to use computers that would eventually
bring the outside population in on it was not the first thing on their
mind. They wanted to get their own hands on the system, so they built
it in record time.

Actually, there were two MIT time-sharing projects. The more staid
project was CTSS -- Compatible Time-Sharing System, so named
because it was designed to be compatible with other systems that were
being constructed elsewhere. The MAC hackers were designing an
operating system they called ITS -- the Incompatible Time-sharing
System. They couldn't care less about making it easy for outsiders to
use. They were having too much fun to share it with the kind of
straight-arrow programmers who could stand to eat or sleep before
finishing a good hack.

There were hackers and there were metahackers. Richard Greenblatt,
because of what his program did to Dreyfus, and because of his ability
to improvise great code without fully understanding how he did it, was
at the top of the hacking order. He was a dropout and looked the
part of the "Pepsi-guzzling, nonsleeping, single-minded
programming addict who ate only food that came from a
vending machine and whose skin had not absorbed anything but
fluorescent light in three years," as Rodman fondly remembered
him, three decades later. But Greenblatt's peers knew him as a
Nijinsky, a Frank Lloyd Wright, a Johann Sebastian Bach of LISP
programming.

The matter of pranks, of what the hackers called "wheel wars" --
mucking up each others files, trying to thwart each other or "crash" the
operating system -- was part of the working environment. Crashing the
system could be accomplished by running some kind of unrunnable
self-swallowing program that the programmer who designed the system
hadn't made precautions for. When such a prank succeeds, everybody
connected to the system can lose important data. In the early sixties,
at places like MAC, it was understood that, despite its unfortunate side
effects, crashing was an allowable test of the system if the hack

revealed an important system vulnerability.

Two decades later, when mischievous and sometimes vandalistic
teenagers with home computers started calling themselves "hackers"
and crashed the files of nonhackers via the telephone, they were doing
something quite different in its ultimate effect, if not in its outward
appearance, from what the first such outlaws at MAC were trying to
accomplish. The excuse was that they were "just exploring" an
interesting vulnerability in the system had some real validity back when
the hackers were creating and testing new time-sharing systems, and
when their expertise was aimed toward a common goal. But when the
system that crashes, as nearly happened in 1983, is an operational
computer used by a hospital to keep track of patient medication
records, it is a somewhat different matter. The same kind of
iconoclastic mischief that had one meaning in the 1960s took on
another meaning in the 1980s.

"Phone-hacking" was another kind of prank pioneered by MAC hackers
in the early 1960s that was to spawn anarchic variants in the 1970s.
The self-taught mastery of complex technologies is the hallmark
of the hacker's obsession, the conviction that all information
(and information delivery technologies) ought to be free is a
central tenet of the hacker ethical code, and the global
telephone network is a complex technological system par
excellence, a kind of ad hoc worldwide computer. The fact that a
tone generator and a knowledge of switching circuits could provide
access to long-distance lines, free of charge, led to a number of
legendary phone hacks. But the mythology didn't die there.

In California, the Stanford AI Laboratory (SAIL) and the proximity to
Silicon Valley led to the growth of another phone-hacking subcult of
"phone Phreaks" in the 1970s, whose hero was a fellow who went by
the name of Captain Crunch. A gap-toothed, crazy-eyed, full-bearded
fellow who now writes software and stays away from illegal activities,
Crunch traveled the highways in the late sixties and early seventies
with a van full of electronic equipment, playing virtuoso pranks from
roadside phone booths -- until he was caught, prosecuted, sentenced,
and jailed. One of Crunch's phone hacking buddies from the outlaw
days, Steve Wozniak, went on to bigger fame when he invented the
first Apple computer. Captain Crunch, also known as John Draper, now
makes very decent legitimate money as "Cap'n Software," the sole
programmer for the microcomputer software company of the same
name.

At Project MAC, and at the subcultural counterparts at Stanford (where
they began to blend some of their California brand of craziness into the
hacker formula) and elsewhere, you had to suffer in order to be
admitted to the more interesting levels of hacker wisdom. As in any
closed subculture, the hackers spared no one their own kind of rites of
passage. David was the youngest initiate, but they didn't go any easier
on him than any other newcomer. You just weren't part of things at
MAC until you met the now-legendary "cookie monster" and some of its
nastier relatives.

http://www.well.com/user/crunch/
http://www.woz.org/

Crashing the system was a fact of life and an implicit challenge at the
higher reaches of hackdom -- if you were smart enough to come up
with something that the system programmers hadn't guarded against,
it was more of an honor than a misdemeanor to bring the computer to
a halt, dumping hours or weeks of someone's work. By comparison, the
cookie monster was relatively mild. Unlike an operating system crash,
the cookie monster struck only selected victims, rather than everybody
who was unfortunate enough to be using the system when a crash was
perpetrated.

The cookie monster would strike most often at four in the morning.
(All-night hacking began with time-sharing systems, not only
because it fit in with the hacker's weird self-image, but because
time-shared systems run faster at night, when all the
nonhackers are out having dates or studying poetry or sleeping
or whatever nonhackers do at night in the real world.) You would
be looking for a bug somewhere in the two-thousandth line of your
program. Suddenly, without warning, the words "I WANT A COOKIE!!"
appear on your monitor screen -- and all your painstakingly crafted
code is relentlessly munched into oblivion by the word COOKIE!!,
multiplied over and over until you finally figure out or (horror of
horrors) somebody has to tell you: you have to type the word
COOKIE!! on your keyboard.

In their own way, the MAC hackers were the forerunners of other kinds
of psychic desperadoes who appeared on college campuses in the
1960s. A contempt for middle-class values and an abiding interest in
the workings of their own mind were two characteristics that hackers
were to share with later subcultures who had nothing to do with
computers. David Rodman was a confirmed hacker in the late 1960s,
when he began to dabble in a very different yet strangely similar
outlaw subculture that was springing up in the Cambridge student
community.

"I would characterize my first acid trip as a quantum leap into the
innards of my own psychology," David recalls today. "Suddenly, there I
was -- inside myself. I didn't know the path to get in, but there I was.
I could observe myself playing the guitar or writing code, and think to
myself while improvising. 'Where am I going and how do I know how to
go there and what am I really expressing?' It was the trip of all trips."

David thinks that "for my peculiar cognitive style, programming was a
perfect preparation for psychedelics, because it allowed me to model a
little piece of my personality in the machine, and interact with it. The
older hackers would tell me 'never mind what the main program does,
we want you to write a program that moves a chess piece on a
chessboard,' so I wrote a small, gemlike part of the utility package that
went into one of the chess programs. The next time I found myself in
one of those gemlike structures on my first acid trip."

The small "gemlike structures" that David created were incorporated
into early versions of Greenblatt's MacHack, the program that
eventually became an emblem of the hackers' sovereignty within the AI
community when MacHack met Dreyfus in 1967. It all started when

Hubert Dreyfus had the temerity to question not only the chances of
success but the very legitimacy of AI research. The entire field of
artificial intelligence had been challenged as a fraud, and very serious
efforts that went beyond the usual acrimony of academic debate were
being made to cut off funding for the foolishness Minsky et al. were
attempting. The Dreyfus affair began in the summer of 1965, when
Hubert Dreyfus -- a philosopher, not a computer scientist -- spent a
few months at the Rand Corporation. The paper that Dreyfus wrote at
the end of that summer, entitled "Alchemy and Artificial Intelligence,"
was informally circulated as a Rand report.

Dreyfus thought that AI was a crock. He specifically attacked some of
the claims AI enthusiasts had made about the future of their field. He
claimed that the "progress" the AI folks had been citing was an illusion,
and attempted to prove that their goal was a delusion. An IBM
researcher, Arthur Samuels, had recently created a pretty decent
checkers program that was on its way to becoming a champion. To
Dreyfus, saying that the checkers program represented a step toward a
true human-like machine intelligence was like saying that an ape who
could climb to the top of a tree was making progress toward flying to
the moon.

Dreyfus challenged the idea that a chess playing program of any
significance could ever be built, pointed out that in 1957 Herbert Simon
had predicted an unbeatable chess playing program within ten years,
and noted that the time was about up. Greenblatt came out of nowhere
with his carefully constructed chess hack, and Seymour Papert, then
codirector of MAC, maneuvered Dreyfus into a public match.

David and other witnesses remember the game as a dramatic and
unpredictable match -- a cliff-hanger that was far more suspenseful
and ingenious and less mechanical than what any of them had
expected. This was more than a friendly rivalry. The source of their
funds was being attacked, and it was just possible that this . . . this . .
. philosopher might manage to get people so stirred up that they
would take their precious terminals away. It was a grudge match, no
question about it.

MacHack won. Gleefully, the bulletin of the Special Interest Group in
Artificial intelligence (SIGART) of the Association for Computing
Machinery reported the results of the match under a headline taken
from Dreyfus' paper: "A Ten-Year-Old Can Beat the Machine --
Dreyfus." The SIGART editors amended it with a subhead of their own:
"But the Machine Can Beat Dreyfus." The SIGART article touched off a
series of letters to editors, accusations, and counteraccusations, and
Dreyfus ended up writing a book, What Computers Can't Do in which
he admitted: "Embarrassed by my expose of the disparity between
their enthusiasm and their results, AI workers finally produced a
reasonably competent program. R. Greenblatt's program called
MacHack did in fact beat the author, a rank amateur."

MacHack went on to become an honorary member of the U. S. Chess
federation, and the Dreyfus-versus-AI controversy has dragged on for
decades, albeit without the hand-to-hand fury of 1967, when a hacker
rose brilliantly to the defense of his art with a legendary hack, then

retreated back to his terminal while others argued the significance of
what he had done. The event had more than symbolic significance: the
formal paper Greenblatt wrote about the program was of historical
value to those who still hope to fulfill Turing's, von Neumann's, and
Shannon's dreams of playing against a true master chess-machine

Eliza
MacHack was actually the second of two historic software births David
Rodman witnessed during his apprenticeship at MAC. Joseph
Weizenbaum showed up at MIT in 1963, and when he created ELIZA
between 1964 and 1966, he changed the way everybody thought about
what computers can't do -- and that included changing his own mind
about where the whole computer-AI enterprise was heading. ELIZA
was a clever way of mimicking human interaction through a
computer-mediated dialogue; what the inventor hadn't
anticipated was people's willingness to be taken in by the
mimicry -- even people who should have known better. By the time
Weizenbaum recovered from the shock of seeing the way people
reacted to his program, he was convinced that something very
dangerous lurked in the much-heralded computer revolution.

The reaction to ELIZA eventually led Weizenbaum to question the
ultimate value of the changes that computers were introducing to the
general population -- changes he felt we might all later regret. He also
declared that we would soon be faced with important decisions about
what computers ought and ought not to do. He specifically cited the
hackers as a symptom of a sickness in the heart of computerdom.
Weizenbaum's assault on some of the most fundamental premises of
the computer culture with the 1976 publication of Computer Power and
Human Reason set off a continuing, oft-heated public debate between
Weizenbaum and the AI community.

The Dreyfus-AI debate had been largely a technical argument, which
helped make MacHack's technical victory so sweet. Weizenbaum's was
a moral argument, and it carried a passionate force far different in
effect from that of Hubert Dreyfus, flying in from California with his
phenomenology. This was Joseph Weizenbaum, honored professor of
computer science at MIT, saying that AI might not be a crock, but we
better be a lot more careful with computers, and watch out for the
hackers in the process.

Remember when those funny-looking "computer letters" started
appearing on the bottom of checks, in the early 1960s? That was part
of Joseph Weizenbaum's work in the days before he came to MIT. As a
software expert for General Electric, he was centrally involved in Bank
of America's ERMA project, a milestone in the computerization of the
world's banking system. When Weizenbaum later spoke about the
morality of using computers in ways that might change millions of
people's lives, he was speaking from experience. His creation of a
program that gave the illusion of a wise, all-knowing, computerized
psychiatrist -- and his shock at seeing how willingly even his computer-
sophisticated colleagues were taken in by the illusion -- triggered

http://www-ai.ijs.si/eliza/eliza.html

Weizenbaum's dissension.

Weizenbaum started out at MIT with what he thought would be an
abstract interest in programs that used simple programming tricks to
answer questions posed in English. He put together a working version
that the hackers had fun with, and which seemed to be a step, albeit a
very primitive first step, toward a genuine language-understanding
program. The hackers enjoyed the pretense that they were
"conversing" with a computer, even though they knew that the
program was parsing very simple sentences with no real
underlying understanding of their meaning.

While he was working on a more elaborate question-answering
program, with greater sentence-parsing capabilities than his first
version, Weizenbaum met a psychiatrist from Stanford named Kenneth
Colby, who was interested in using computers to model mental states
and mental disorders in order to find clues to more effective forms of
psychotherapy. Colby helped Weizenbaum create a special-case version
of ELIZA, known as DOCTOR. In the introduction of his 1976 book,
Weizenbaum described how this most successful and disturbing version
of ELIZA came into being, and conveyed a little of the flavor of the
"ELIZA effect":

The work was done in the period 1964-1966, and it was reported in the
computer-science literature in January 1966 and August 1967. To
summarize it briefly, I composed a computer program with which one could
"converse" in English. The human conversationalist partner would type his
portion of the conversation on a typewriter connected to a computer, and
the computer, under control of my program, would analyze the message
that had been transmitted to it, compose a response to it in English, and
cause the response to be typed on the computer's typewriter.

I chose the name ELIZA for the language analysis program because, like
the Eliza of Pygmalion fame, it could be taught to "speak" increasingly well.
. . .

For my first experiment, I gave ELIZA a script designed to permit it to play
(I really should say parody) the role of a Rogerian psychotherapist engaged
in an initial interview with a patient. The Rogerian psychotherapist is
relatively easy to imitate because much of his technique consists of drawing
his patient out by reflecting the statements back to him. The following
conversation betwen a young lady and ELIZA playing doctor illustrates both
the Rogerian technique of encouraging a patient to keep talking and the
operation of the computer program ELIZA. The first to "speak" is the young
lady. The computer's responses are printed entirely in capitals.

Men are all alike.

IN WHAT WAY

They're always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I'M SORRY TO HEAR YOU ARE DEPRESSED

The first thing that alarmed Weizenbaum was the way people who
knew enough about computers to know better began to get drawn into
serious conversations with it about their lives! Even his own secretary
had fallen into the habit of conversing with it! People were asking to be
left alone with the machine to spill out their most intimate thoughts!
Weizenbaum was so horrified that he started rethinking everything he
believed. But that was just a symptom of how gullible we all might be
to what he knew was just a clever hack.

More serious, to Weizenbaum's way of thinking, was the fact
that Colby and others thought that "computer-therapists" might
soon be applied to some form of "automatic psychotherapy" --
an idea Weizenbaum considered "obscene." Weizenbaum's ethical
debate, although it originated in the same laboratory that spawned so
many important innovations in AI and computer systems design, will
not be discussed at length here. His books and the ideas expressed by
Weizenbaum and his critics deserve consideration on their own accord.

David Rodman was one of those who spent time conversing with ELIZA
when it was still in its infancy, while he was employed as a research
assistant in the same laboratory. Some of David's earliest LISP hacks
were attempts to emulate ELIZA. And although Weizenbaum didn't
know it, some of David's early acid trips were spent in "conversation"
with ELIZA.

While Minsky was a kind of patron saint of hackdom, and Greenblatt
was an unkempt hero, and McCarthy had his own brand of AI
prodigies, Weizenbaum was not very fond of some of the hackers who
shared his working quarters, to put it mildly. In his book, he mounted a
direct assault on the inner circle of hard-core hackers:

Wherever computer centers have become established, that is to say, in
countless places in the United States, as well as in virtually all other
industrial regions of the world, bright young men of disheveled appearance,
often with sunken glowing eyes, can be seen sitting at computer consoles,
their arms tensed waiting to fire, their fingers, already poised to strike at
the buttons and keys on which their attention seems to be as riveted as a
gambler's on the rolling dice. When not so transfixed, they often sit at
tables strewn with computer printouts over which they pore like possessed
students of a cabalistic text. They work until they drop, twenty, thirty hours
at a time. Their food, if they arrange it, is brought to them: coffee, cokes,
sandwiches. If possible they sleep on cots near the computer. But only for
a few hours -- then back to the console or the printouts. Their rumpled
clothes, their unwashed and unshaven faces, and their uncombed hair all
testify that they are oblivious to their bodies and to the world in which
they move. They exist, at least when so engaged, only through and for
computers. These are computer bums, compulsive programmers. They are
an international phenomenon.

Weizenbaum attacked those particularly obsessed specimens among
the hackers he called "compulsive programmers" on several grounds
besides their unorthodox appearance and dietary habits. But he also
took care to note (parenthetically) that "(It has to be said that not all
hackers are pathologically compulsive programmers. Indeed, were it
not for the often, in its own terms, highly creative labor of people who

proudly claim the title 'hacker,' few of today's sophisticated time-
sharing systems, computer language translators, computer graphics
systems, etc., would exist.)"

The compulsive programmers, according to Weizenbaum's criteria,
spend far more time playing with their computers than using them to
solve the problems they are being paid to solve. They are often superb
technicians, he admitted, but he also charged that they are very often
so sloppy when they document the programs they have written that
other programmers, when they later have to use or modify them, are
unable to make sense of what they did.

The obsessed hacker's motivation is not problem-solving, but the raw
thrill of interacting with the computer, and that, Weizenbaum charged,
was a sign, not of prodigy, but of pathology. "The compulsive
programmer," he insisted, "is merely the proverbial mad scientist who
has been given a theater, the computer, in which he can, and does,
play out his fantasies."

Minsky and others rose to the hackers' defense, pointing out that they
should be considered with some of the same suspension of normal
standards that society reserves for artists. And just as it is true that a
hollow-eyed dropout is not a particularly pleasant sight, and perhaps
there is truth to the charge that many of them find it easier to relate
to the machine than to other people; isn't there also a chance that
they are being unfairly maligned?

Hackers would rather be judged by their creations than by their
behavior, and nobody cares about van Gogh's habits of dressing, or
whether Mozart went without sleep for days at a time. Minsky deplored
public stereotyping and scapegoating of people who happen to be
passionate about programming instead of violin playing or basketball or
making money.

Weizenbaum was undoubtedly right about the temptation to use
computers for stimulating fantasies of omnipotence over
fantastically controllable worlds. The value to society of obsessively
converting sophisticated computers into toys and games has been a
matter of extended debate. Nobody would deny that hackers love
fantasy. That these fantasies can be fascinating to nonhackers as well
has been an inside secret for years, ever since the hack known as
"Dwarf Hall of Mists, XYZZY and the Infamous Repository," created by
Will Crowther and Don Woods, now more commonly known as
"Adventure," surfaced at MAC and SAIL.

After they introduce you to ELIZA, "Adventure" is what hackers show
you when you ask them why they are addicted to computing. They hit
a few keys, sit you down in front of a monitor and a keyboard, and
come back in a few hours to forcibly unplug you. Even in this age of
more dazzling computer-generated effects, the sheer temptation to
explore the computer-stored fantasy remains strong.

After you are told you can give simple instructions like "drop sword,"
"go up," "cross bridge," the following words, still famous at every
computer center, appear on the screen: "You are standing at the end of

http://www.winternet.com/%7Eradams/adventure/history.html
http://tjwww.stanford.edu/adventure/

a road before a small brick building. Around you is a forest. A small
stream flows out of the building and down a gully . . ."

Without warning, and without any high-resolution graphics or sound
effects, you are drawn into Colossal Cave, where a labyrinth of
chambers containing treasure, dwarfs, magic, strategy and dangers
awaits your command. It can take weeks to finish a game. More than
one commentator has used "Adventure" as a metaphor for hacking:
This is a complex pathway hidden inside the computer, and it is up to
the hacker to use all his or her skill, knowledge, and magic to find the
treasure and bring it back.

A high regard for programming skill, a mischievous bent, and a
predilection for playing games seemed to accompany the spread
of the hacker culture, along with Spacewar and Adventure.
Weizenbaum might have been the first, but he wasn't the last
computer scientist to voice concern over the possible dangerous side
effects of this way of thinking.

One famous debate erupted at Stanford, years after Weizenbaum's
original diatribe. Stanford has been a West Coast headquarters for
hackers since the mid-1960s, although significant outposts have long
existed at UC Berkeley, Los Angeles, San Diego, and Santa Barbara, at
Stanford Research Institute, and even at Rand before the Ellsberg
affair. But LOTS -- Stanford's Low Overhead Time-sharing System -- is
where the undergraduate hackers hang out. It was here that another,
more recent major hacker controversy surfaced, in the form of a
dialogue on the medium that was known by the mid-1970s as
"electronic mail." It was the option of everybody on LOTS to post and
read messages, either to specific individuals or groups, or to anyone
who was interested, via the "bulletin board" sector of the mail program.
People could read and add messages whenever they were logged onto
the computer.

Sometimes serious issues were discussed in this manner, and
sometimes long impassioned graffiti (known as "flames") were launched
against a variety of targets ranging from the profound to the utterly
inconsequential. Sometimes serious issues were disguised as flames,
and vice versa. Branches and subbranches of such exchanges could
continue for months, making up a kind of electronically embedded ad
hoc literature. That was where the "hacker papers" came from.

This particular counterpoint of flames on the subject of hackers, written
by hackers, came to the attention of the "real world" because a
Stanford professor of psychology named Philip Zimbardo discovered the
dialogue and published it, with commentary, in Psychology Today
magazine in 1980, twenty years after Rodman met Greenblatt et al. in
Building 26.

The exchange of flames began with a hacker's version of Luther's 95
theses, nailed, metaphorically, to the door of the electronic temple. A
self-sworn ex-hacker who called himself "G. Gandalf" (the tradition is
to give oneself a pseudonym on the public mail channel, like the
"handles" used in the citizen's-band radio subculture) posted a bulletin
entitled "Essay on Hacking," that said, among other things:

http://www-ctl.stanford.edu/lectures/awtts95/zimbardo.html

In the middle of Stanford University there is a large concrete-and-glass
building filled with computer terminals. When one enters this building
through the glass doors, one steps into a different culture. Fifty people
stare at terminal screens. Fifty faces connected to fifty bodies connected to
50 sets of fingers that pound on 50 keyboards ultimately linked to a
computer. . . . These are the members of a subculture so foreign to most
outsiders that it not only walls itself off but is walled off, in turn, by those
who cannot understand it. The wall is built from both sides at once.

These people deserve a description. In very few ways do they seem
average. First they are all bright, so bright, in fact, that they experienced
social problems even before they became interested in computers. Second,
they are self-contained. Their entire social existence usually centers around
one another. . . . Third, all aspects of their existence reinforce one another.
They go to school in order to learn about computers, they work at jobs in
programming and computer maintenance, and they lead their social lives
with hackers. Academically, socially, and in the world of cash, computers
are the focus of their existence.

As might well be expected, this diatribe did not go unanswered. As
usual, opinion was heatedly divided. Some -- a minority, of course --
agreed wholeheartedly with the heresy. Hackers as a group harbor a
love for heresy, iconoclasm, and debating whether something is or is
not heretical, even if -- especially if -- the topic relates to hackers
themselves.

Of those who rebutted Gandalf, the one known as "A. Anonymous"
offered the West Coast version of the "Minsky defense":

We are dealing with an infinitely malleable tool. People who choose to
develop and use that tool, whether for work, play, or both, have that
choice and cannot be denied it. A person who chooses to be a musician
must devote hours and hours to gain adequate expertise. But would you
consider the computer hacker any less creative than such a person? I
certainly wouldn't. The computer serves not only as a workhorse, but also
as an easel for exercising one's creative abilities. Therefore, in my opinion,
the hacker has not limited myself at all. Rather, he has expanded his
intellectual horizon because now he has the infinite tool.

As for the charge that it disrupts one's social life, I would tend to agree
with this to a point. But it depends on how controlled the individual is. At
any time, he can withdraw to a more normal schedule. Why doesn't he?
The reason is obvious. The infinite tool that knows few boundaries is
accessible to a much higher degree, and thus he can devote more time to
it. Why is this wrong? I think it is definitely a bonus, since the usual
restraints of 9-to-5 are eliminated and the person is allowed to expand
beyond boundaries to do what he wants.

Now we come to the human versus the machine factor. Gandalf stresses
the necessity of human interaction and the inherent evil of the machine.
Would you stress the evil of instruments in an orchestra, or the instruments
in a laboratory, or the typewriter of an author? All of these occupations
demand extraordinary amounts of time for excellence. But I see no greater
human interaction in these fields than in computers. I feel that people who
disparage computers for a seemingly decreased human interaction are not
at all familiar with the true import of the computer. Not only is it the
infinite tool, it is also an extremely fluid medium of communication.

The publication of the controversy set off an avalanche of electronic
mail over the ARPAnet and at local computer centers. The hacker
debates had spread to the amateur "bulletin board computers" by
1983, when the movie WarGames and the real-life young computer-

systems "crackers" who subsequently surfaced brought the word hacker
to widespread public attention, in this newer, unpleasantly restricted
sense.

One of the oldest rules of the game is "thou shalt not do unto ordinary
computer users what thou hast done to other hackers." Almost all of
the old-time hackers deplore what the young computer trespassers and
crashers did -- "dark-side hacking" -- although the anarchist minority
still insist that the ultimate freedom is the freedom to figure out how
the communication-computing system works, and declare that the
burden of protection against trespassing ought to be on the system
programmer who has files to protect, not on the explorer who might
tap in during some midnight jaunt through the network.

Real computer criminals aside, the concern of the noncomputing
public over the hacker controversy does seem a bit strange.
After all, these people aren't accused of mayhem or arson -- just of
being very smart when it comes to knowing how to operate computers.
The capacity for scapegoating is very high in a culture where most
people have been led to believe that computers are either smarter than
they are or too complicated for ordinary people to use. James
Milojkovic, an associate of Zimbardo's at Stanford who was writing his
psychology doctoral thesis about the cognitive and motivational impact
of the microcomputer, came to the hackers' defense.

In a 1982 interview, Milojkovic said he spent plenty of time around
hackers, and saw nothing pathological about what they were doing. In
regard to all the public concern about what threat (noncriminal)
hackers might pose, he said "clearly it's nonsense. I think what's
happening is that there's some sort of fear that maybe what they're
doing with the machines is aimed against us." Like "A. Anonymous,"
Milojkovic sees nothing wrong with a little compulsiveness in regard to
learning: "I can think of nothing more natural than to fall in love with
knowledge," he said, "and hackers are so deeply in love with
knowledge of the computers that they're just swept off their
feet."

A case in point: David Rodman. When last we saw him, lurking in the
background of the MacHack versus Dreyfus match, an acidhead
teenage dropout hacker, he was almost certainly headed for a sunken-
eyed, computer-nut future. In fact, quite the opposite turned out to be
the case. He was doing quite well for himself, even at sixteen, as a
freelance programmer. He got some offers to set up computer systems
for social service bureaucrats, so he moved to D.C. in his early
twenties.

By 1972, David found himself up to his ears in the same problem that
plagued Herman Hollerith -- handling huge data bases. In fact,
designing probes of the U.S. Census information, now stored on
magnetic tape, was David's specialty. He moved back to Cambridge to
work for a software think tank, did more than a few jobs for agencies
he doesn't want to name, and in 1978 he decided it was time to turn
what he knew into a marketable product.

David Rodman ended up creating and marketing a tool for managing
data bases, a program that he designed to be usable by microcomputer
owners. Thus he was one of many formerly sequestered programmers
who joined the software business at the beginning of the consumer
computing boom, when it was still possible for a programmer-turned-
entrepreneur to go far and fast. A couple of other, older, MIT hackers
put out VisiCalc in 1978 -- the "electronic spreadsheet" that allows
users to ask "what-if" questions about numerical data -- and millions of
people who had never touched a keyboard before began tackling
problems that had formerly been reserved for mainframe programmers.

I first met David Rodman in the early 1980s, because of his strange
grin. I knew his name because it was stamped onto the plastic card
that was pinned to his lapel. His rumpled suit and convention badge
didn't exactly mark him as a high roller, but his smile projected a self-
assurance of almost demented intensity. We were standing in the
magnificent casino that is conveniently located between the Hilton
lobby and the indoor walkway to the Las Vegas convention center.
Upward of fifty thousand people attending Comdex, a national
convention for the microcomputer industry, trooped through the casino
every day. The arriving computerists didn't mind spending their money,
and they were an amiable group. A lot of them seemed downright
happy. David Rodman, for example, was still smiling after he turned
away from the craps table.

"Why do you look so damn cheerful?" I couldn't help inquiring.

"I was wrong about the dice," he replied, "but I'm too far ahead to
complain."

"Craps?"

"Data management systems."

"Not my game," I said. "What's the product?"

"About forty pages of zeroes and ones."

"The market pretty good for zeroes and ones?"

"The software market, as of today, is nothing less than astounding."

Considering the fact that he had just dropped a hundred dollars in less
than ten seconds, he must have been doing very well indeed to be
making money at the convention faster than he was losing it in the
casino. The crooked grin on his face, a variant of the slightly demented
expression that attracted my attention at the craps table, made it clear
that he didn't mind talking about his business.

We got to know each other, and eventually I learned about what he did
before he was the prime mover and chief asset of a software
corporation. There was no sign that he was an ex-MAC hacker, ex-
acidhead, ex-consultant to unnamed intelligence agencies. He was
freckled, balding, and what hair he had left was short and neatly
combed. He was clean-shaven, and his attire wouldn't have been out of
place on an accountant or a widget salesman. But in his heart, he was
still a hacker, and an evangelistic one at that.

By the time we got through the story to the point of talking

about his current product, it was clear that he had not turned
his back on the programming priesthood, but was merely
interested in expanding it, to his own profit, by giving millions of
people a direct taste of the same experience that hooked him
back in Building 26.

"I remember the way I learned jazz improvisation, and how that
affected my programming. When I was first learning, I said to myself,
'Here I am in this chord, and I've got to get to that chord.' The
transition, the way you hop from note to note or pass a variable from
procedure to procedure -- that's where the individual style of the
musician or the programmer comes in. Nothing happened, a lot of the
time. But when my teacher showed me something I hadn't realized
before, pointed out that a certain note would work in a way I wasn't
expecting, for instance, I would get a little shock of understanding, and
the next time I came to a transition I'd loosen my grip on my
conscious effort and try to recapture that shock, and there would be
the note or the line of code I needed.

"Now I think of the person sitting in front of his computer with a
keyboard. What this person needs is a profit and loss statement, or
information about sales accounts, or a breakdown of stock in inventory.
What I need to do is to create an environment for that person,
structured in such a way that it is natural and easy to translate his or
her desire to the actual P & L statement, or a sales report or inventory
account, and even show them how they can improvise along the way.
Not only should this tool work better than their old pencil and paper
and calculator and filing cabinet -- it should also give the user one of
those pleasurable little shocks. I want my file management system
to enable that person to become a jazz musician.

"A really good program designer makes an artist out of the
person who uses the computer, by creating a world that puts
them in the position of 'Here's the keyboard, and here's the
screen. Now once you learn a few rudimentary computer skills,
you can be a superstar.' "

It was an unexpected, but perhaps not inappropriate philosophy to
hear from a LISP hacker turned software vendor. He has yet to carve
out an empire like Bill Gates or Steve Wozniak, but David Rodman
knows that most of the potential consumers of microcomputer software
are still in the earliest stages of their progression toward obsessive
software intoxication. David sees a niche for people like himself as
toolmakers and trailblazers, leading the way for the emergence of an
entire population of programming artists. He wants programming to
become a performing art.

But long before hackers started thinking about using their computers
for intellectual improvisation -- before David Rodman was born, in fact
-- a dreamer out in California was designing his own kind of mind
amplifier.

read on to

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Nine:
The Loneliness of a Long-Distance
Thinker
Harry Truman was President and Sputnik was a word that only Russian
language experts knew when Doug Engelbart first thought about
displaying words and images on radar screens, storing them in
computers, and manipulating them with levers and buttons and
keyboards. For over thirty years, Engelbart has been trying to hasten
what he believes will be the biggest step in cultural evolution since the

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

invention of the printing press. To hear him tell it today, both the
computer establishment and the computer revolutionaries still fail to
understand that the art and power of using a computer as a mind
amplifier are not in how the amplifier works but in what the amplified
minds are able to accomplish.

At the end of the summer of 1945, just after the surrender of Japan,
Engelbart was a twenty-year-old American naval radar technician,
waiting for his ship home from the Philippines. One muggy day, he
wandered into a Red Cross library that was built up on stilts, like a
native hut.

Vannevar Bush
"It was quiet and cool and airy inside, with lots of polished bamboo and
books. That was where I ran across that article by Vannevar Bush,"
Engelbart recalls. More than three decades later, he still fondly
remembers the room where he first encountered the dream that has
dominated most of his life. At that time, the news of Hiroshima was
still fresh and searing. He found himself wondering whether the same
inventiveness that produced nuclear bombs might be used to prevent
such destruction in the future. Engelbart started designing computer-
based problem-solving systems in 1951. He hasn't stopped yet.

The earliest and one of the clearest articulations of the idea that
information processing technology could be used to amplify
human memory and thinking was the one Doug found that day
in 1945, in an article entitled "As We May Think," published
toward the end of the war in The Atlantic Monthly. The author
was the highest-ranking scientific administrator in the U.S. war
effort, Vannevar Bush.

Bush, the son and grandson of Yankee seafarers, was the same
mathematician who had constructed analog computers at MIT in the
1930s. He was also in charge of over 6000 U.S. scientists during World
War II, as director of the Office of Research and Development. His two
most important goals were starting the Manhattan project and finding a
means to stop German bombing, goals that both directly hastened the
invention of computing machinery. Ironically, Bush didn't mention the
potential of the early computers as information-handling devices when
he wrote his article. But he did present an idea that was to bear fruit
many years later -- a description of a science-fiction-like general-
purpose tool to help us keep track of what we know.

Looking toward the postwar world, Bush foresaw that recent
breakthroughs in science and technology were going to create
problems of their own. With all these scientists producing all this
knowledge at an unprecedented rate, how was anyone to keep
track of it all? How would this rapidly expanding body of
knowledge benefit anybody if nobody knew how to get the
information they needed?

http://www.isg.sfu.ca/%7Educhier/misc/vbush/

"The summation of human experience is being expanded at a
prodigious rate, and the means we use for threading through
the consequent maze to the momentarily important item is the
same as was used in the days of square-rigged ships," Bush
wrote.

He urged men of science to turn their efforts to making the
increasingly unwieldy accumulation of human knowledge more
accessible to individuals.

But the future technology that Bush foresaw extended beyond the
borders of science to the ordinary citizenry. The day was coming when
not only scientists but ordinary citizens would be required to navigate
through ever-more complicated realms of information. In the pages of
the Atlantic, Bush proposed that a certain device should be developed,
a device to improve the quality of human thinking. Because one of its
functions was to extend human memory, Bush called his hypothetical
machine a memex. But Bush was one of the first to see that rapid
access to large amounts of information could serve as much more than
a simple extension of memory. Although he described it in terms of the
primitive information technologies of the 1940s, the memex was
functionally similar to what is now known as the personal computer --
and more.

Some ideas are like seeds. Or viruses. If they are in the air at the right
time, they will infect exactly those people who are most susceptible to
putting their lives in the idea's service. The notion of a knowledge-
extending technology was one of those ideas. Fifteen years after Bush
published his Atlantic article, J. C. R. Licklider published his article
about making computers into a communication medium. But only five
years after Bush's article, Doug Engelbart, infected by the idea of
creating a mind-extending tool, incubated his own ideas about how to
use machines to augment human intelligence.

After the war, with an electrical engineering degree and his experience
with radar, Engelbart found a job at Ames Laboratory in California,
working on contracts for one of NASA's ancestors, the National
Advisory Committee on Aeronautics. After a couple of years at Ames,
he asked a woman he met there to marry him.

"The Monday after we got engaged," Engelbart remembers today, "I
was driving to work when I was hit with the shocking realization that I
no longer had any goals. As a kid who had grown up in the
depression, I was imbued with three goals -- get an education,
get a steady job, get married. Now I had achieved them.
Nothing was left."

Doug Engelbart tends to think seriously about things when he finds
something worth thinking about. And his own life is certainly not
exempt from being an object of serious thinking. While he drove
along a two-lane paved road that is now a freeway, he reckoned
that he had about five and a half million working minutes

remaining in his life. What value did he really want from that
investment? At the age of twenty-five, in December of 1950, he
started to think about what new goals he might set for himself.

"I dismissed money as a goal fairly early in the decision process. The
way I grew up, if you had enough money to get by, that was okay; I
never knew anybody who was rich. But by 1950, it looked to me like
the world was changing so fast, and our problems were getting so
much bigger, that I decided to look for a goal in life that would have
the most payoff for mankind."

For several months after he made the decision to commit himself to an
appropriately humanitarian enterprise, Doug searched for the right one.
He contemplated his situation and skills and thought about the various
kinds of crusades he might join. With his radar training, and what he
was beginning to learn about computers, Engelbart was also looking for
a cause that wouldn't require him to retread his engineering education,
or move too far away from his new home. He had a challenging job
and a pleasant drive to work. Santa Clara Valley was still the world's
largest prune orchard, and the electronics industry had only recently
moved out of a couple of garages in Palo Alto. The drive gave him time
to think.

Ultimately, the kinds of crusades that appealed to him still didn't
satisfy his needs: there weren't clear-cut ways of organizing one's
thoughts to run a crusade. He was an engineer, not a political
organizer, and the world was becoming too complicated for anything
but the most well-organized crusades. Suddenly, Doug recognized that
he was running into the same fundamental issue over and over again.

Engelbart realized, as had Vannevar Bush, that humankind was
moving into an era in which the complexity and urgency of
global problems were surpassing time-honored tools for dealing
with problems. He also began to understand, as did Licklider a few
years later, that handling the informational by-products of problem-
solving had itself become the key to all the other problems. The most
important task no longer lay in devising new ways to expand
our accumulation of knowledge, but in knowing where to look
for the answers that were already stored somewhere. "If you can
improve our capacity to deal with complicated problems, you've made
a significant impact on helping humankind. That was the kind of payoff
I wanted, so that's what I set out to do."

Although many of the details took decades to work out, the main
elements of what he wanted to achieve came to him all at once: "When
I first heard about computers, I understood, from my radar experience,
that if these machines can show you information on punchcards and
printouts on paper, they could write or draw that information on a
screen. When I saw the connection between a cathode-ray
screen, an information processor, and a medium for
representing symbols to a person, it all tumbled together in
about half an hour.

"I started sketching a system in which computers draw symbols
on the screen for you, and you can steer it through different
domains with knobs and levers and transducers. I was designing
all kinds of things you might want to do if you had a system like
the one Vannevar Bush had suggested -- how to expand it to a
theater-like environment, for example, where you could sit with
a colleague and exchange information. God! Think of how that
would let you cut loose in solving problems!"

After thirty often-frustrating years of pursuing a dream that the
computer industry has long ignored, Doug Engelbart still can't keep the
excitement out of his soft voice and the faraway look out of his eyes
when he talks about the prospects he foresaw at twenty-five, and has
pursued ever since. But he's not sure whether today's generation of
computerists, with all their fancy hardware, are getting any closer to
the real issues.

Although history has proved him to be an accurate visionary in many
ways, but perhaps a less-than-ideal manager of projects and people,
and even his friends use the word "stubborn" in describing his attitudes
about his theories, Doug Engelbart still wields the power of a quiet
person. The magnetism of his long-envisioned goal is still strong for
him, so strong that a good deal of it still radiates when he talks about
it. In 1971, his friend Nilo Lindgren described him in Innovation
magazine:

When he smiles, his face is wistful and boyish, but once the energy of his
forward motion is halted and he stops to ponder, his pale blue eyes seem
to express sadness or loneliness. Doug Engelbart's voice, as he greets you,
is low and soft, as though muted from having traveled a long distance, as
though his words have been attenuated by layers of meditation. There is
something diffident yet warm about the man, something gentle yet
stubborn in his nature that wins respect.

"He reminds me of Moses parting the Red Sea," is the way Alan Kay
describes Engelbart's gentle charisma. Of course, the original Moses
never set foot in the promised Land. And he never had the reputation
of being an easy man to work with.

In 1951, Engelbart quit his job at Ames and went to graduate school at
the University of California at Berkeley, where one of the first von
Neumann architecture computers was being built. That was when he
began to notice that not only didn't people know what he was talking
about, but some presumably "objective" scientists were overly hostile.
He started saying the wrong things to people who could affect his
career, things that simply sounded strange to the other electrical
engineers.

"When we get the computer built," this young engineer kept asking,
"would it be okay if I use it to teach people? Could I hook it up to a
keyboard and get a person to interact with the computer? Maybe teach
the person typing?" The psychology people thought it was great, but
computers were hardly their department. The engineering people said,
"There's no way that kind of idea is going to fly."

http://www.rheingold.com/texts/tft/1.html1

The interactive stuff was so wild that the people who knew
about computers didn't want to hear about it. Back then, you
didn't interact with a computer, even if you were a programmer. You
gave it your question, in the form of a box of punched cards, and if
you had worked very hard at stating the question correctly, you got
your answer. Computers weren't meant for direct interaction. And
this idea of using them to help people learn was downright
blasphemy.

After he got his doctorate, Engelbart came to another one of those
internally triggered decision points in his life that his dream continued
to bring his way. Nobody in his department wanted to listen to talk
about building a better way to solve complex problems, and he felt that
he would have to construct a whole new academic discipline before he
could begin the research he really wanted to do. The university,
Engelbart decided, was a place to get his journeyman's card, but not a
place to follow his vision.

Thus, young Doctor Engelbart went to the commercial world, looking
for an opportunity to develop electronic systems that would eventually
help him do what he wanted in terms of augmenting human intellect,
and would pay his room and board as he contributed to the
development of marketable devices as well. Engelbart brought some of
his ideas to a progressive young company down the road in Palo Alto.
For a change, here were some people looking to the future. Not too
much more than a decade out of electrical engineering school
themselves, Bill Hewlett, David Packard, and Barney Oliver (their head
of research and development) were enthusiastic about Doug's proposal.
A deal was offered. Engelbart drove home, elated. On the way home, in
typical Engelbart fashion, Doug started thinking about it.

"I pulled the car over to the first phone booth and called Barney Oliver
and said that I just wanted to check my assumption that they saw a
future in digital technology and computers -- which I thought was a
natural path for their electronic instrumentation company to follow. I
had assumed that they knew that the ideas I proposed to them that
afternoon were only a bridge to digital electronics. And Barney replied
that no, they didn't have any plans for getting into computers. So I
said 'Well, that's a shame, because I guess it cools the deal. I have to
go the digital route to pursue the rest of what I want to do.'"

"So my deal with Hewlett-Packard was called off," Doug says, wrapping
up the reminiscence with one of his famous wry smiles, adding: "the
last time I looked they were number five in the world of computers."

Doug kept looking for the right institutional base. In October, 1957, the
very month of Sputnik, he received an offer from an organization in
Menlo Park, "across the creek" from Palo Alto, then known as the
Stanford Research Institute. They were interested in conducting
research into scientific, military, and commercial applications of
computers. One of the people who interviewed him for the SRI job had
been a year or two ahead of Doug in the Ph.D. program at Berkeley,
and Doug told him about his ideas of getting computers to interact with
people, in order to augment their intellect.

http://www.hp.com/abouthp/history.html
http://www.sri.com/

"How many people have you already told about that?" he asked Doug.

"None, you're the first one I've told," said Doug.

"Good. Now don't tell anybody else. It will sound too crazy. It will
prejudice people against you."

So Doug kept quiet about it. For about a year and a half, he earned his
living and learned the ropes in the think-tank business and thought
about putting his ideas into a written proposal. Then he told his
superiors that he was willing to work hard to pay his way at the
institute but he really had to have a framework to cultivate his idea --
an augmentation laboratory where people and machines could
experiment with new ways of creating and sharing knowledge, or at
least a project to describe exactly what an augmentation laboratory
might be. There was some friction, but eventually he was given the go-
ahead.

The U.S. Air Force Office of Scientific Research, ever vigilant for new
knowledge about how humans operate machines, provided a small
grant. Doug finally got what he wanted -- the freedom to explore a
field in which he still had no colleagues. "It was lonely work, not having
anybody to bounce the ideas off, but I finally got it written down in a
paper I finished in 1962 and published in 1963."

Total silence from the community greeted the announcement of the
conceptual framework Engelbart had thought about and worked to
articulate for over a decade. But the few people who happened to be
listening happened to be the right people. Bob Taylor, a young fellow at
NASA who was one of the bright technological vanguard of the post-
Sputnik era, one of the new breed of research funders who didn't fear
innovation as a matter of reflex, pushed some of the earliest funding of
Doug's project.

Fortunately, by that time another one of the few people who were able
to understand Engelbart's vision, J. C. R. Licklider, was moving ahead
with his ARPA funding blitz. As a result of Licklider's support, time-
sharing was coming along rapidly. By the early sixties, some of the
low-level hardware and software tools to build Doug's dreamed-of
high-level methodological and conceptual structures were being tested.
Licklider and Taylor thought Engelbart was just the kind of
forward-thing researcher they wanted to recruit for the task of
finding new and powerful uses for the computational tools their
research teams were creating. They were particularly interested in
the same paper of Doug's that the mainstream of computer science had
chosen to ignore.

The paper that attracted the attention of ARPA and met such a
thundering silence from the wider community of computer theorists in
1963 was entitled "A Conceptual Framework for the Augmentation of
Man's Intellect." In its introduction, Engelbart presented the manifesto
by which he meant to launch an entire new field of human knowledge:

By "augmenting man's intellect" we mean increasing the capability of a
man to approach a complex problem situation, gain comprehension to suit

his particular needs, and to derive solutions to problems. Increased
capability in this respect is taken to mean a mixture of the following: that
comprehension can be gained more quickly; that better comprehension can
be gained; that a useful degree of comprehension can be gained where
previously the situation was too complex; that solutions can be produced
more quickly; that better solutions can be produced; that solutions can be
found where previously the human could find none. And by "complex
situations" we include the professional problems of diplomats, executives,
social scientists, life scientists, attorneys, designers -- whether the problem
situation exists for twenty minutes or twenty years. We do not speak of
isolated clever tricks that help in particular situations. We refer to a way of
life in an integrated domain where hunches, cut-and-try, intangibles, and
the human "feel for a situation" usefully coexist with powerful concepts,
streamlined technology and notation, sophisticated methods, and high-
powered electronic aids.

It was no accident that "hunches, cut-and-try, intangibles," were listed
early and "high-powered electronic aids" was listed last. Although he
knew that widespread access to digital computers was the only means
by which our society could make use of an augmented knowledge
system, Engelbart also understood that the hardware was a low-level
component of the total system he meant to augment. Human intellect
uses tools, but the power of the human mind is not itself limited to the
tools the human brain automatically provides.

Our culture has given us sophisticated procedures for dealing with
problems, procedures that augment our innate capacity for learning
new things by giving us the benefit of what others before us have
learned. These ways of doing things are the software that creates
civilization. A member of a preliterate culture of the remote New
Guinea highlands, for example, possesses the same innate mental
capabilities as a Western city-dweller, but something else must be
added to the repertoire of what that New Guinea highlander knows how
to do before he can drive a car, check out a book from a library, or
write a letter.

The "something extra" Engelbart emphasized, is not a property of the
tool. It isn't the nervous system of the individual that separates the
"civilized" person from the "primitive." To certain cultures that we deem
primitive, the most sophisticated urbanite is decidedly lacking in the
necessary survival skills. If the cultural situation of the previous
paragraph were reversed, the same ignorance on the part of the
displaced person would be evident: If you drop a lifelong New Yorker
into the New Guinea Highlands, don't expect him or her to know how
to build a grass shelter or what to do in a tropical storm. Somebody
who knows what to do in those situations has to teach survival skills to
the newcomer, thus augmenting his or her innate capacities. It is here
that the original augmentation of human intellect comes in --
the tools and procedures that cultures make available to
individuals:

Our culture has evolved means for us to organize and utilize our basic
capabilities so that we can comprehend truly complex situations and
accomplish the processes of devising and implementing problem solutions.
The ways in which human capabilities are thus extended are here called
augmentation means, and we define the four basic classes of them:

1. Artifacts -- physical objects designed to provide for human comfort, the

manipulation of things or materials, and the manipulation of symbols.

2. Language -- the way in which the individual classifies the picture of his
world into the concepts that his mind uses to model that world, and the
symbols that he attaches to those concepts and uses in consciously
manipulating the concepts ("thinking").

3. Methodology -- the methods, procedures, and strategies with which an
individual organizes his goal-centered (problem-solving) activity.

4. Training -- the conditioning needed by the individual to bring his skills in
using augmentation means 1, 2, and 3 to the point where they are
operationally effective.

The system we wish to improve can thus be visualized as comprising a
trained human being together with his artifacts, language, and
methodology. The explicit new system we contemplate will involve as
artifacts computers and computer-controlled information-storage,
information-handling, and information-display devices. The aspects of the
conceptual framework that are discussed here are primarily those relating
to those relating to the individual's ability to make significant use of such
equipment in an integrated system.

The biggest difference between the citizen of preliterate culture
and the industrial-world dweller who can perform long division
or dial a telephone is not in the brain's "hardware" -- the
nervous system of the highlander or the urbanite -- but in the
thinking tools given by the culture. Reading, writing, surviving
in a jungle or a city, are examples of culturally transmitted
human software. The hypothetical transplanted native,
Engelbart points out, can move step by step through an
organized program by which he or she may learn to drive a car
or check out a book from a library.

How do we adapt to new ways of thinking? Engelbart used the
metaphor of a toolkit, and proposed that we organize our intellectual
problem-solving tools in a hierarchy:

It is likely that each individual develops a certain repertory of process
capabilities from which he selects and adapts those that will compose the
processes that he executes. This repertory is like a toolkit. Just as the
mechanic must know what his tools can do and how to use them, so the
intellectual worker must know the capabilities of his tools and have suitable
methods, strategies, and rules of thumb for making use of them. All of the
process capabilities in the individual's repertory rest ultimately on basic
capabilities within him or his artifacts, and the entire repertory represents
an integrated, hierarchical structure (which we often call the repertory
hierarchy).

As an example, Engelbart offered the process of issuing a
memorandum -- a task that involves putting specific information in a
formal package and distributing it to other people. The reason for
writing the memo, the memowriter's role in the organization, the
intended audience, the importance of the subject matter of the memo
to the organization's goals -- these are the higher level components of
the hierarchy.

At an intermediate level are the skills of marshaling facts, soliciting

opinions, thinking, formulating ideas, weighing alternatives, forecasting,
making judgments, that go into framing the memo, and all the
communication skills that go into putting the memo into form. Toward
the bottom of the hierarchy are the artifacts used to prepare the memo
and the medium by which it is communicated -- typewriter, pencil,
paper, interoffice mail.

Engelbart proposed a hypothetical method for boosting the
effectiveness of the whole system by introducing an innovative
technology into a relatively low level of the hierarchy. "Suppose
you had a new writing machine," he wrote, "a high-speed
electric typewriter with some very special features." In a few
words, he proceeded to describe what is known today as a
"word processor."

What might be the effect of such a machine on the memo-writing
process? Engelbart's 1963 speculations sound like advertising copy for
word processing systems of the 1980s -- and more:

This hypothetical writing machine permits you to use a new process for
composing text. For instance, trial drafts can rapidly be composed from
rearranged excerpts of old drafts, together with new words or passages
which you insert by hand typing. Your first draft may represent a free
outpouring of thoughts in any order, with the inspection of foregoing
thoughts continuously stimulating new considerations and ideas to be
entered. If the tangle of thoughts represented by the draft becomes too
complex, you can compile a reordered draft quickly. It would be practical
for you to accommodate more complexity in the trails of thought you might
build in search of the path that suits your needs.

You can integrate new ideas more easily, and thus harness your creativity
more continuously, if you can quickly and flexibly change your working
record. If it is easier to update any part of your working record to
accommodate new developments in thought or circumstance, you will find it
easier to incorporate more complex procedures in your way of doing things.
. . .

The important thing to appreciate here is that a direct new innovation in
one particular capability can have far-reaching effects throughout the rest
of your capability hierarchy. A change can propagate up through capability
hierarchy, higher-order capabilities can now reorganize to take special
advantage of this change and of the intermediate higher-capability
changes. A change can propagate down through the hierarchy as a result of
new capabilities at the high level and modification possibilities latent in
lower levels. These latent capabilities may have been previously unusable in
the hierarchy and become usable because of the new capability at the
higher level.

While Engelbart was, in fact, suggesting that computers could be used
to automate a low-level task like typewriting, the point he wanted to
make had to do with changes in the overall system -- the capabilities
such an artifact would open up for thinking in a more effective, wider-
ranging, more articulate, quicker, better-formatted manner. That is
why he distinguished his proposed new category of computer
applications by using the term augmentation rather than the more
widespread word automation.

From Engelbart's point of view, the fact that it took over fifteen more

years for word processing to catch on was not as important as the fact
that people continue to myopically concentrate on the low-level
automation and ignore the more important leverage it makes possible
at higher levels. The hypothesis he presented in the 1963
framework was that computers represent a new stage in the
evolution of human intellectual capabilities. The concept
manipulation stage was the earliest, based in biological capabilities of
the brain, followed by the stage of symbol manipulation based on
speech and writing, and the stage of manual external symbol
manipulation, based on printing.

The computer-based typewriter was an example of the coming fourth
stage of automated external symbol manipulation, to be brought about
by, but not limited to, the application of computers to the process of
thinking and communicating:

In this stage, the symbols with which the human represents the concepts
he is manipulating can be arranged before his eyes, moved, stored,
recalled, operated upon according to extremely complex rules -- all in very
rapid response to a minimum amount of information supplied by the
human, by means of cooperative technological devices. In the limit of what
we might now imagine, this could be a computer, with which individuals
could communicate rapidly and easily, coupled to a three-dimensional color
display within which extremely sophisticated images could be constructed,
the computer being able to execute a wide variety of processes on parts or
all of these images in response to human direction. The displays and
processes could provide helpful services and could involve concepts not
hitherto imagined (e.g., the pregraphic thinker would have been unable to
predict the bar graph, the process of long division, or card file systems).

. . . we might imagine some relatively straightforward means of increasing
our external symbol-manipulation capability and try to picture the
consequent changes that could evolve in our language and methods of
thinking. For instance, imagine that our budding technology of a few
generations ago had developed an artifact that was essentially a high-
speed, semiautomatic table-lookup device, cheap enough for almost
everyone to afford and small enough to be carried on the person. Assume
that the individual cartridges sold by manufacturers (publishers) contained
the lookup information, that one cartridge could hold the equivalent of an
unabridged dictionary, and that a one-paragraph definition could always be
located by the average practices individual in less than three seconds.

What changes in language and methodology might not result? If it were
so easy to look things up, how would our vocabulary
develop, how would our habits of exploring the
intellectual domains of others shift, how might the
sophistication of practical organization mature (if each
person could so quickly and easily look up applicable
rules), how would our education system take
advantage of this new external symbol-manipulation
capability of students and teachers and administrators?

At the end of the 1963 paper, Engelbart proposed that the
hypothesis should be tested by constructing an augmentation
laboratory in which humans could use new information
processing artifacts to explore the new languages, methods, and

training made possible by the computer systems then coming
into existence in Cambridge, Lexington, Berkeley, and Santa
Monica. Since the ultimate product was to be for everyone, not just
computer experts, people who were involved in editing, designing, and
other knowledge-related fields would have to be recruited to join the
electrical engineers and programmers. Because the goal was to
enhance the power of the human mind, and to learn how to introduce
such enhancements to human organizations, a psychologist would also
be needed.

The laboratory itself would have to be a consciously designed
bootstrapping tool, because the very tools this team would be
constructing first were the tools needed to do their own jobs better.
Before they could hope to augment other people's tasks, they had to
augment their own jobs. Bootstrapping -- building the tools to
build better tools, and testing them on yourself as you go along,
was a central component of Engelbart's strategy, intended to
match the pace of anticipated developments in computer
technology. SRI management had few illusions about obtaining the
funding necessary to implement such a scheme.

In 1964, Bob Taylor, who by that time had moved from NASA to ARPA,
told Engelbart and SRI that the Information Processing Techniques
Office was prepared to contribute a million dollars initially to provide
one of the new time-sharing computer systems, and about a half a
million dollars a year to support the augmentation research. It came as
a surprise to Engelbart's superiors, who were eager to procure
government contracts for developing new computer technologies, but
who didn't exactly regard his grandiose plans for a mind-extending
laboratory as their most promising candidate for large-scale funding.
One can imagine the SRI brass pulling out the organization chart after
the ARPA funders left, to find out who and where Doug Engelbart
happened to be.

Here was the support Engelbart had been seeking for years, coming
right at the point where the conceptual framework for the system had
already been worked out and the technology he needed was becoming
available. The next step was to assemble the team who would build the
first prototype.

Perhaps the Augmentation Research Center's greatest effect on
computer culture for generations to come was in the succession
of remarkable people who passed through that laboratory and
on to other notable research projects. Dozens of gifted
individuals over the span of a decade dedicated themselves to
putting into action the system Engelbart and Licklider had
dreamed about in previous years. Many of those former
Engelbart protégés are now leaders of their own research teams
at universities or the R & D divisions of commercial computer
manufacturers.

The Augmentation Research Center (ARC) consisted of the "engine
room," where the new time-sharing computers were located, a
hardware shop where the constantly upgraded computer systems and
experimental input-output devices were built and maintained, and a
model "intellectual workshop" that consisted of an amphitheater-like
space in which a dozen people sat in front of large display terminals,
creating the system's software, communicating with each other, and
navigating through dimensions of information by means of what was
known as NLS (for oNLine System).

NLS was an exotic and intoxicating new brew of ARPA-provided
gadgetry, homebrewed software wizardry, and altogether new
intellectual skills that were partially designed in advance and partially
thrown together as the designer-subjects of the experiment went
along. After four years of stumbling, backtracking, leaping forward,
then more confidently exploring this new territory, after hardware
crises and software crises and endless argumentation about how to go
about doing what they all agreed ought to be done, NLS was beginning
to fulfill the hopes its builders had for it. It was time to gamble.

Whenever he consulted the feeling in his stomach, Doug Engelbart had
no doubt that it was a gamble. Sitting all alone on that stage in San
Francisco, watching his support team scramble around the hastily
woven nest of cables and cameras surrounding the base of the
platform, facing an audience of several thousand computer experts, it
was all too evident to Doug that any number of possible accidents -- a
thunderstorm, a faulty cable, a concatenation of software glitches --
could effectively kill their future chances of obtaining research funds.

But he had begun to lose his patience, waiting for decades for the rest
of the world to catch on to something as important as augmentation.
And his colleagues shrared Engelbart's confidence in the delicate
coalition of people, electronic devices, software, and ideas they called
the NLS system.

Doug's painstakingly thought-out conceptual framework, the prototype
hardware, systems he and Bill English developed, and his bootstrapping
laboratory of systems programmers, computer engineers,
psychologists, and media specialists were only corroborating what Doug
had known for years -- computers can help intellectual workers think
better. By the late 1960s, the problem lay in getting his ideas and the
meaning of his team's accomplishments across to people in the wider
computer world.

The augmentation center, as planned, had grown to seventeen people
by 1968. They were on their third upgraded computer system, and the
software was evolving from the first crude experimental versions to a
real working toolkit for information specialists. In a matter of
months, the SRI Augmentation Research Center was due to
become the Network Information Center for ARPA's experiment
in long-distance linking of computers -- the fabled ARPAnet.

In the fall of 1968, when a major gathering of the computer

clans known as the Fall Joint Computer conference was
scheduled in nearby San Francisco, Doug decided to stake the
reputation of his long-sought augmentation laboratory in Menlo
Park -- literally his life's work by that time -- on a
demonstration so daring and direct that finally, after all these
years, computer scientists would understand and embrace that vital
clue that had eluded them for so long.

Those who were in the audience at Civic Auditorium that afternoon
remember how Doug's quiet voice managed to gently but irresistibly
seize the attention of several thousand high-level hackers for nearly
two hours, after which the audience did something rare in that
particularly competitive and critical subculture -- they gave Doug and
his colleagues a standing ovation.

The audience, in the same room where the first "computer faire" for
microcomputer homebrew hobbyists was held some years later,
witnessed a kind of media presentation that nobody in the
computer milieu had ever experienced before. State-of-the-art
audiovisual equipment was gathered from around the world at the
behest of a presentation team that included Stewart Brand, whose
experience in mind-altering multimedia shows was derived from his
production of get-togethers a few years before this, held not too far
from this same auditorium, known as "Acid Tests."

Doug's control panel and screen were linked to the host computer and
the rest of the team back at SRI via a temporary microwave antenna
they had set up in the hills above Menlo Park. While Doug was up
there alone in the cockpit, a dozen people under the direction of Bill
English worked frantically behind the scenes to keep their delicately
transplanted system together just long enough for this crucial test
flight. For once, fate was on their side. Like a perfect space launch, all
the minor random accidents canceled each other. For two hours,
seventeen years ago, Doug Engelbart finally got his chance to
take his peers -- augmentation pioneers and number crunchers
as well -- on a flight through information space.

Fortunately for the historical record, a film of the event was made.
Those who were at the original event say that the sixteen-millimeter
film is a poor shadow of the original show. During the original
presentation, an advanced electronic projection system provided a
sharply focused image, twenty times life sized, on a large screen. Doug
was alone on the stage, the screen looming above and behind him as
he sat in front of his CRT display, wearing the kind of earphone-
microphone headsets that radar operators and jet pilots use, his hands
resting on an unusual-looking control console connected to his chair.

The specially designed input console swiveled so he could pull it onto
his lap. A standard typewriter keyboard was in the center, and two
small platforms projected about six inches on either side. On the
platform to his left was a five-key device he used for entering
commands, and on the platform to the right was the famous
"mouse" that is only now beginning to penetrate the personal

http://www.well.com/user/sbb/

computing market -- a device the size of a pack of cigarettes, with
buttons on the top, attached to the console with a wire. Doug moved it
around with his right hand.

In front of him was the display screen. The large screen behind him
could alternate, or share, multiple views of Doug's hands, his face, the
information on the display screen, and images of his colleagues and
their display screens at Menlo Park. The screen could be divided
into a number of "windows," each of which could display either text
or image. The changing information displayed on the large screen,
activated by his fingertip commands on the five-key device and his
motions of the mouse, began to animate under Doug's control.
Everyone in the room had attended hundreds of slide presentations
before this, but from the moment Doug first imparted movement to the
views on the screen, it became evident that this was like no audiovisual
presentation anyone had attempted before.

Engelbart was the very image of a test pilot for a new kind of
vehicle that doesn't fly over geographical territory but through
what was heretofore an abstraction that computer scientists call
"information space." He not only looked the part, but acted it: The
Chuck Yeager of the computer cosmos, calmly putting the new system
through its paces and reporting back to his astonished earthbound
audience in a calm, quiet voice.

Imagine that you are in a new kind of vehicle with virtually unlimited
range in both space and time. In this vehicle is a magic window that
enables you to choose from a very large range of possible views and to
rapidly filter a vast field of possibilities -- from the microscopic to the
galactic, from a certain word in a certain book in a certain library, to a
summary of the entire field of knowledge.

The territory you see through the augmented window in your new
vehicle is not the normal landscape of plains and trees and oceans, but
an informationscape in which the features are words, numbers, graphs,
images, concepts, paragraphs, arguments, relationships, formulas,
diagrams, proofs, bodies of literature and schools of criticism. The
effect is dizzying at first. In Doug's words, all of our old habits of
organizing information are "blasted open" by exposure to a
system modeled, not on pencils and printing presses, but on the
way the human mind processes information.

When the new vehicle for thought known as Arabic numbers was
introduced to the West, and mathematicians found that they didn't
have to fumble with Roman numerals in their calculations anymore, the
mental freedom must have been dizzying at first. But not nearly as
dizzying as this. There is a dynamism of the informationscape that
needs no explanation, that needs only to be experienced to be
understood. In that sense, Doug knew he had no choice but to take the
risk of putting it up on the big screen and letting his audience judge for
themselves.

Even the chewing-gum-and-bailing-wire version Doug was attempting

to get off the ground in 1968 had the ability to impose new structures
on what you could see through its windows. The symbolic domain,
from minutiae to the grandest features, could be arranged at will by
the informationaut, who watched through his window while he
navigated his vehicle and the audience witnessed it all on the big
screen. Informational features were reordered, juxtaposed, deleted,
nested, linked, chained, subdivided, inserted, revised, referenced,
expanded, summarized -- all with fingertip commands, A document
could be called up in its entirety, or the view could be restricted to only
the first line or first word of each paragraph, or the first paragraph of
each page.

One of the example tasks he demonstrated involved the creation of the
presentation he was giving at the moment, from the outline of the talk
to the logistics of moving their setup to the Civic Auditorium. The
content of the information displayed on the screen referred to the
lecture he was giving at the moment, and the lecture referred to the
information on the screen -- an example of the kind of self-referential
procedure that programmers call "recursion."

Doug moved his audience's attention through the outline by the way he
manipulated their "views" of the information. His manipulations
maneuvered the screen display and the audience's consciousness
through categories of information, zoomed down to subcategories,
broke them into their atomic components, rearranged them, then
zoomed back up the hierarchy to meet the vocal narration at a key
point in the story, when the words on the screen and the words coming
from the narrator merged before branching off again. It was an
appropriately dramatic presentation of a then-novel use of computers.
While it appeared to be a radically sudden innovation to many of those
in the audience, it was the culmination of careful experimentation at
ARC that had already spanned most of a decade.

It is almost shocking to realize that in 1968 it was a novel
experience to see someone use a computer to put words on a
screen, and in this era of widespread word processing, it is hard
to imagine today that very few people were able to see in
Doug's demonstration the vanguard of an industry. When time-
sharing systems first allowed programmers to interact directly with
computers, in the early 1960s, the programmers developed tools
known as "text editors" to help them write programming code. (The
first one at MIT had a hand-lettered sign that dubbed it "expensive
typewriter.") But "word processing" for non-programmers was still far
in the future, despite Engelbart's demonstration of its potential.

The quality of video display technology in 1968 was also amazingly
primitive by today's standards. The letters and numbers on Doug's
screen looked as if they were handwritten -- closer to crude swaths
"painted" onto a radar screen than the crisp pixels we are accustomed
to seeing today on video display terminals.

In seeking a domain where a small success would mean a large boost
in effectiveness, and where success would attract a large-scale
research and development effort, Doug chose to augment the

"humdrum but practical and important sorts of tasks" that
occupy an increasing proportion of the people in our society:
preparing, editing, and publishing documents. This area of
document preparation and communication was but a small slice from
the grand range of applications he envisioned, but it was one tool that
the augmentation team itself needed immediately, and one that every
laboratory and office in the world would want -- as soon as people
understood that computers weren't just calculators.

The seventeen members of the Augmentation Research Center,
Engelbart explained during their 1968 show, were attempting to create
a medium that would be useful to the other ARPA computer
researchers and eventually to anyone who works with information. At
the same time, this was a behavioral science experiment as well
as a computer systems experiment, because the project team
would be the subjects as well as the architects of the research.
Making computers do what they wanted was only the beginning.
The really difficult work was adjusting themselves to new ways
of working and thinking.

Consequently, one of the first projects was to create a system to make
it easy for the members of the research team -- and eventually for
other intellectual workers -- to compose, store and retrieve, edit, and
communicate words, numbers, and graphics. "Text editing" had to
become more amenable to non-programmers and more suited for the
expression of thoughts and composition of prose.

They needed to invent display devices and adapt the computer and
write the programs; then they had to use what they had invented to
compose a description of the system. The hardware and software
specialists worked on representing symbols on screens and storing
them in the computer's memory. Then the communications specialists
used the text editors to write the manuals to instruct future members
of the growing project in the use of new tools.

The text-editing system was the first stage of Doug's long-term plan.
The actual use of the system to design and describe the next
generation was the second stage. Both stages were accomplished by
1968. Even as early as 1968, NLS was not limited to what we now call
a word processing system. The third-stage goal was to build an entire
toolkit for intellectual tasks, and develop the procedures and methods
by which those tools could be used, individually and collectively, to
boost the performance of people who did information-related work. The
toolkit would then be used to develop new modes of computer-aided
human collaboration.

Software was created to connect the text-editing system with a special
kind of electronic filing arrangement that would serve as a unifying
memory, record, and medium for their individual efforts. The software
journal through which individuals and groups could have access
to a shared thinking and communicating space had been in
development since 1965-1966; it enabled individuals to insert

comments into the group record of the augmentation experiments (or
browse through them), and enabled programmers to trace the way
system features had evolved. The journal, along with shared screen
telephoning to enhance real-time, one-to-one communications, was
part of the overall dialogue support system designed to help increase
effectiveness of group communication and decision making.

The idea of the journal predated the development of computer
networks and teleconferencing, originating as it did with a dozen
terminals connected to a single multiaccess computer. It was an
important first try at "reaching through" the toolkit to engage in
communication with another human user of the system. It was a
theoretical precursor to the "electronic mail" medium that was to
evolve when the ARPA network became operational in the early 1970s.
When ARPAnet came along, connecting many computers in different
locations into a shared computational "space," it wasn't such a shocking
new medium to those few ARC pioneers who had been working on a
smaller, localized version for years.

The journal was designed to bring order to a stream of dialogues,
notes, and publications generated in the process of building the system
and finding out how to work it. Besides serving as an electronic
logbook that would be useful to human factors specialists and systems
programmers, the journal was meant to be a medium for a formal
dialogue among users that would serve the same purpose as today's
traditional libraries and professional journals -- but would do so in such
an amplified manner that it would become a uniquely powerful method
of transmitting knowledge.

For example, scientific journals in every field follow a form in which a
paper describing research results is refereed, then published, after
which subsequent papers can cite the previous paper. The record in
any field of scientific knowledge -- and the forum in which the
significance of findings is debated -- consists of a growing list of
journal citations and accompanying text. It takes time for new
innovation and comments to circulate, and it takes a relatively long
time for individuals to thread their way through a branching history of
citations. In the NLS version, it is very easy to jump directly and
quickly from any article to the text of cited articles and back --
reducing to seconds or minutes procedures that would take hours or
months in even the most efficient library/journal system.

Publication and distribution are radically changed by a computerized
system, since it is so easy to automatically notify everybody on a
certain kind of reading list material matching their interest profile is
now available. Distribution lists can be members of distribution lists --
you can designate a list to be the recipient of an announcement, and
every member of the designated list will receive your message.
Messages and articles can contain lists of citations, and catalogs and
indices can be message forms of their own. Ideas and hypotheses
could be conveyed by telling interested members of the community to
read a certain list of cited articles in a particular order.

This more formal and highly structured kind of intellectual discourse is
essential to science, but is not the usual mode of communication used

in the day-to-day affairs of ordinary citizens. As Licklider and Taylor,
Doug's long-time colleagues and principal funders, pointed out
in 1968, the new interactive computers and new intercomputer
networks would make it possible to use tools like NLS to
construct a computer-aided community in which not only
intellect but communication could be augmented.

At the most fundamental level, communication begins when two or
more people need to share information, transact business, make
decisions, resolve differences, reach agreements, solve problems,
communicate plans. One of the early creations in the NLS collection of
software levers and pulleys and skyhooks brought the other capabilities
of the system to bear on communications. ARC developed a "mode of
teleconferencing" whereby:

. . . two or more people, positioned at separated display consoles, can link
their displays so that all see the same image, and at option any can
exercise control. When simultaneously talking on the telephone the
resulting dialogue can be uniquely effective -- corresponding to an in-
person conference around a collective assemblage of their scratch pads,
working records, and individual support facilities. . . .

But consider the great potential already existing when some of the
participants -- or even a single participant -- can effectively use computer

tools to work with the relevant materials and processes. There is a
great value in merely conducting themselves as though
they were congregated at a magic blackboard -- each
easily able to pull forth materials from his notes or
familiar reference sources, copy across into his private
workplace any material offered from what the other
brings forth.

In 1969, ARC became one of the original nodes of the ARPAnet system
that connected defense-related research computers around the country
into a network. The network, Bob Taylor's brainchild, used common-
carrier communication lines to interconnect computers in different parts
of the country. While the separate time-sharing communities were busy
exchanging data, programs, and messages, the ARC people saw their
participation in the network as an opportunity to put their knowledge to
good use, and to extend their experiment beyond their SRI laboratory
to include everyone around the country who was connected to the
network.

As the network grew, ARC branched out from its primary activity of
continually redesigning itself. It began serving as the Network
Information Center, offering referencing and organizing services for the
distributed community of ARPAnet users. No longer languishing in a
half-forgotten Quonset somewhere on the huge SRI grounds,
the augmentation laboratory, equipped with the latest time-
sharing hardware, was by 1970 the proud subject of VIP tours.

After so many years of solitary envisioning, Engelbart had become even
more optimistic about the ultimate significance of their enterprise than

http://www.rheingold.com/texts/tft/command?stat+vcc+vc
http://www.rheingold.com/texts/tft/command?stat+vcc+vc

he had been when he started. In the spring of 1970 he told his
colleagues at the Interdisciplinary conference on multi-access Computer
Networks:

. . . It has been my business to struggle with these concepts for two
decades now, and the signs that I read at least tell me that the changes in
our ways of thinking and working will be more pervasive and extreme than
ANY OF US appreciates -- a revolution like the development of writing and
the printing press lumped together. . . .

It will take explorers of this domain decades even to map its currently
visible dimensions. The real rush hasn't begun: this Conference is a
meeting of suppliers looking for the prospector trade; we haven't really
been giving attention to the developments that will follow the prospecting.

My research group is now moving into a next stage of work that we call

"team augmentation." Here, instead of just the
individual facilitating his private domain searching,
studying, thinking and formulating, as his office place
provides for him, we are exploring what can be done
for a team of "augmented individuals" who have in
common a number of terminals, a set of computer
tools, working files, etc. (as we do), to facilitate their
team collaborations.

The problem-solving assistance Engelbart had dreamed about alone in
the 1950s became the "integrated working environment" he proposed
in 1963, which in turn grew into the toolbuilders' toolkit that he and his
small group of colleagues used to build an "intellectual workshop"
throughout the remaining seven years of the decade. By the early
1970s, the wider community of ARPA-funded computer researchers and
representatives of the business world were joining the bootstrapping
process. Paradoxically, just when their leader decided that "team
augmentation" would be their goal, his own team began to react
negatively to growing pressures -- technological, psychological, and
social.

Doug had always warned that "the larger augmentation system is
much more complex than the technological 'subsystem' upon which it
depends," and the 1970s were the era when ARC began to practice
what Engelbart had preached. During the first decade of the
laboratory's existence, computer technology had progressed at an
astonishing pace, and the SRI crew were doing their utmost to use the
innovations as quickly as they came along.

The "rule of two" (that computer power would double every two years)
and the Engelbart-induced zeal of the augmentation team kept them
fueled for an effort to bootstrap and continually adjust themselves to
the capabilities of their upgraded tools -- an effort that required
extraordinary intensity. The bootstrapping and readjusting continued
with unabated enthusiasm, at least until the early 1970s, when the idea
of building a system that was meant to "transcend itself every six to
eight months" to keep pace with hardware and software advances
turned out to be more pleasant to contemplate than to carry out. It
had been a challenging and exhilarating to build this new system for

augmenting thought -- but it wasn't as much fun having one's work
habits augmented at a forced-march pace.

When both the old-timers and newcomers to the growing
project faced the task of learning new roles, changing old
attitudes, adopting different methods, on regular basis, just
because the system enabled them to do so, the great adventure
became more arduous than any of the ARC
pioneers/experimental subjects had anticipated. So a psychologist
was brought in to consult about those parts of the system that weren't
found in the circuitry or software, but in the thoughts and relationships
of the people who were building and using the system.

Dr. James Fadiman joined ARC as an observer-catalyst-therapist.
Fadiman was particularly interested in the ways human consciousness
and behavior change in new situations, and it didn't take him long to
realize that the process of "being augmented" was in fact a new,
nonchemical form of altered consciousness.

Several of the things Fadiman learned about the "augmentation
experience" have taken more than a decade to filter out to people who
design computers for nonexperts. One thing he learned almost
immediately was that most people resist change, especially in the
workplace, and resistance works both ways -- people who are resistant
to learning an augmentation system are equally resistant to giving it up
once they have adopted it. The initial resistance is partially grounded in
a general fear of the unknown.

Doug Engelbart, of course, saw these things on his own scale, and
through the eyes of an engineer. There would be rough spots, software
and interpersonal bugs, arguments and conflicts, to be sure -- but the
master plan was progressing nicely, considering all those years he had
worked alone. The toolkit had become a workshop, and they knew the
workshop indeed worked because they had been their own guinea pigs
for a decade.

In the same 1970 address in which he referred to the multiaccess
computing community as a "meeting of suppliers looking at the
prospector trade," Engelbart also predicted that the future would
see "a steadily increasing number of people who spend a
significant amount of their professional time at terminals," and
speculated that the future of dispersed personal augmentation
systems linked together into network communities would create
new kinds of societal institutions: "In particular, there will
emerge a new 'marketplace,' representing fantastic wealth in
commodities of knowledge, service, information, processing,
storage, etc."

In his usual forge-ahead manner, Engelbart was already bringing
members of the business community into the ARC experiment.
Business managers and management scientists had been working at
ARC, experimenting with using NLS tools to manage the steadily

growing ARC project. In proper bootstrapping style, they looked at
their attempts to apply the system to their own research management
as yet another experiment. Richard Watson and James C. Norton
worked closely with ARC to develop their experimental discoveries into
a system that would be usable by people who were not computer
experts but whose occupations involved the manipulation of
information.

Sometime in the early 1970s, Engelbart was inspired by a book, just as
he had been enthused by magazine articles by Bush and Licklider in
years past. This time, it was the theory proposed by business
management expert Peter Drucker in the late 1960s. Knowledge, by
Drucker's definition, is the systematic organization of information; a
knowledge worker is a person who creates and applies
knowledge to productive ends. The rapid emergence of an
economy based primarily on knowledge, Drucker predicted,
would be the most significant social transformation of the last
quarter of the twentieth century.

Drucker noted something about the future of knowledge in the
American economy that seemed to converge, from an unexpected but
not unpredictable direction, with the course Engelbart had plotted for
the augmentation project at the beginning of its second decade.
Drucker was one of the first of a growing number of social scientists
who have claimed that an examination of labor statistics reveals a
great deal about the role of knowledge work in everybody's future.

In 1973, ten years after his solo "Framework . . . ," Engelbart, Watson,
and Norton presented a paper on "The Augmented Knowledge
Workshop" to the National Computer Conference. Acknowledging their
debt to Drucker's ideas, the authors pointed out that the special
computer systems that had been evolving at ARC were designed to
alleviate the problems associated with "the accelerating rate at which
knowledge and knowledge work are coming to dominate the working
activity of our society':

In 1900 the majority and the largest single group of Americans obtained
their livelihood from the farm. By 1940 the largest single group was
industrial workers, especially semiskilled machine operators. By 1960, the
largest single group was professional, managerial, and technical -- that is,
knowledge workers. By 1975-80 this group will embrace the majority of
Americans. The productivity of knowledge has already become the key to
national productivity, competitive strength, and economic achievement,
according to Drucker. It is knowledge, not land, raw materials, or capital,
that has become the central factor in production.

Noting Drucker's use of terms such as "knowledge organizations" and
"knowledge technologies," Engelbart, Watson, and Norton specified an
augmented knowledge workshop that was nothing less than a totally
redesigned working environment for everybody in the "knowledge
sector." The authors acknowledged that ordinary knowledge
workshops -- offices, boardrooms, libraries, universities, studios
-- have existed for centuries. Augmented knowledge workshops,
however, existed only as prototypes, and would not come into

http://www.mag.keio.ac.jp/%7Ederick/drucker.html
http://www.pangea.ca/%7Edayre/kwork.html
http://www.pangea.ca/%7Edayre/kwork.html

widespread usage until the technologies pioneered at ARC (and
by then, at a new place across the creek, called PARC) grew
economical enough to sell as office equipment. This was the origin
of an idea that was later adapted by others in a truncated version
known as "The Office of the Future."

The authors described the technology they had built and used for
augmenting their own knowledge as individuals and in groups, but
emphasized that the tools were only the first part of a total
transformation of the system -- including changes in methods,
attitudes, roles, lifestyles, and working habits. They knew from their
own experience that the psychological and social adjustments would be
the most intense and volatile changes set off by the introduction of
these systems into existing organizations.

In 1975, after twelve years of continuous support, ARPA dropped ARC.
The staff quickly shrank from a high of thirty-five to a dozen, then
down to a few, and finally down to Doug Engelbart and a large amount
of software. A decade of useful work is an unheard of length of time in
the hyperaccelerated world of software technology, but bootstrapping
had kept NLS continually evolving as it expanded its usefulness, as it
moved up to machines with larger memories and faster processors,
and as the community thought of new things to do with it.

Even before ARPA drastically reduced its funding, ARC had started a
subscription service to several corporations who wanted to experiment
with using the services of the augmentation system. The way Engelbart
saw it, it was time to bring the system out of the research world, after
its extended gestation, to test it on a community of real-world users.
The way SRI saw it was that the whole project was obviously finished
as a magnet for research funds, and they might as well sell it. In 1977,
SRI sold the entire augmentation system to Tymshare Corporation, and
Engelbart went with it. The system, renamed "Augment," is now
marketed by Tymshare as one of their office automation services.

Nobody disputes that Engelbart's vision was the single factor that
stayed stable through twenty of the most turbulent years of computer
science, and those few colleagues who know of his importance to the
evolution of computing are loathe to speak unkindly of him, yet the
tacit consensus is that Doug Engelbart the visionary allowed
himself to remain fascinated by an obsolescent vision. NLS was
powerful but very complex, and the notion of a kind of
knowledge elite who learned complex and difficult languages to
operate information vehicles is not as fashionable in the world
of less sophisticated but more egalitarian personal computers
created by Engelbart's students.

The twelve years of ARC's heyday at SRI, from 1963 to 1975, were
technologically wild years. That period was one of enormous historical,
social, and cultural upheavals, as well. Mistakes, conflicts, blind alleys,
and other pitfalls were unavoidable during the course of a project that
began in the Kennedy administration and continued throughout the
years of the Vietnam war, campus revolts, assassinations, the

emergence of the counterculture, the advent of women's liberation,
Watergate, and ended during the Carter administration.

As individuals, and as a group, ARC wasn't immune to the conflicts that
affected the rest of the culture, although it was privy to its own
mutated forms of it. Before the counterculture made its media splash
and thousands of affluent American offspring started acting weird and
growing their hair long, places where powerful computers were to
be found had already spawned their own brand of weirdo -- the
hacker. The advent of this new subculture within the computer
subculture was not the direct cause of ARC's downfall, but it was
symptomatic of the problems Engelbart faced in the 1970s.

Engelbart found himself caught between the conservatism of his
employers and the radicalism of his best students. ARC had seemed a
bit strange to the old-line data-processing types at SRI, and these new
people hanging out at Doug's lab added cultural as well as
technological differences to an already strained relationship. To say
that SRI is conservative is an understatement. Although some of the
subjects their researchers pursue can be unorthodox, their clients are
such straitlaced institutions as the Defense Department, the intelligence
community, and the top one hundred corporations.

Hackers were barely tolerated in the long, clean, high-security halls of
SRI. But when the counterculture started to infiltrate, and the rumors
started about some of the hackers augmenting their consciousness in
more ways than one, SRI brass became extremely uncomfortable.

There was trouble from within, as well as from above. Some of the
experiments in "new-age" social organization, encouraged by Engelbart
himself, threatened to split the ARC group into two camps -- those who
were still techies at heart, concerned only with the advancement of the
state of computing art, and those who saw augmentation as an integral
part of the wider countercultural revolution that was going on around
them. And there were those who felt that even Doug's technological
ideas, although they might have once been radical and futuristic, were
becoming outmoded. The idea of augmentation teams and high-level
time-shared systems began to seem a bit old-hat to the younger folks
who were exploring the possibility of personal computers.

In the early 1970s, some of Engelbart's first and most important
recruits, who had helped him create the first NLS system, left SRI for
PARC, the new research center Xerox was putting together. The new
Xerox facility was a hotbed of augmentation-oriented thought, but with
a major difference -- the advent of large-scale integrated circuitry
made it possible to dream of, and even design, high-powered
computers that could fit on an individual's desk. This emphasis on
one person, one computer made for important philosophical and
technical differences with Engelbart's approach.

For a while, Engelbart at SRI and his former students at Xerox were
engaged in collaboration, but eventually PARC and ARC drifted apart.
Doug still dreamed of creating augmentation centers in universities and
industries, providing a service for any team of people who worked with

information. The former ARC members were looking forward to an even
wider potential computer-using population. The idea at Xerox was to
use the new integrated circuit technology to create computers more
powerful than the previous generations of minicomputers -- and to
devote an entire computer to each person, instead of sharing it among
thirty or forty users.

PARC, as we shall see, went on to become the new mecca for those
who saw the computer as a tool for augmenting the human intellect.
ARC never seemed to make it to the promised land, and the former
point-man for radical technology seemed to be more and more isolated
in an interesting but less than influential backwater. As more and more
of Engelbart's earlier dreams became realities in other institutions, this
judgment seemed to be less than fair. It is impossible to tell if there
would have been a PARC if there hadn't been an ARC, and while the
miniaturization revolution made personal computers inevitable in a
technical sense, there is good reason to question whether the kind of
personal computing that exists today would ever have been developed
if it had not been for the pathfinding work accomplished by Engelbart
and his colleagues.

Doug Engelbart and the people who helped him build ARC did not
succeed in building a knowledge workers' utopia. Some hackers do
seem to be pathologically attached to computers. These facts might
have very little to do with the way other people will use the
descendants of the tools they created. In fact, if you think about it,
some of the wildest and woolliest of the MAC and ARC hackers were
following in a long tradition of people who weren't exactly run-of-the-
mill citizens -- from Babbage and Lovelace to Turing and von
Neumann.

It must be remembered that MAC and ARC were only part of a larger
effort to raise computing to a whole new level, and hackers weren't the
only scientist-artisans involved in that effort. Whatever future
historians decide about the personalities of the people involved in
carrying out this unprecedented exercise in planned breakthrough, they
will have to consider the role of the hackers who created time-
sharing, computer networks, and personal computers in the
1960s and early 1970s, not out of sick obsession or in-group
frivolity, but out of a serious desire to construct a new medium
for human communication.

For the time being, Doug Engelbart still works away at his original
goals, adapting the core of NLS to the new kind of computers that have
come to use in the 1980s. To Tymshare Corporation's customers, the
Augment system seems less science-fiction-like and more practical in
this age of office automation. People in the business world are
beginning to pay attention to what Doug is saying, for the first
time since he started saying it, decades ago.

Still, Doug is neither rich nor famous nor powerful -- not that these
were ever his goals. All he seems to hunger for is all he ever
hungered for -- a world that is prepared for the kind of help he

wants to give. Ironically, his office at Tymshare in Cupertino,
California, is merely blocks away from the headquarters of
Apple Corporation, where icons and mice and windows and bit-
mapped screens and other Engelbart-originated ideas are now
part of a billion-dollar enterprise.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Ten:
The New Old Boys
from the ARPAnet

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT Press,
including a revised chapter with 1999 interviews of Doug Engelbart, Bob Taylor,
Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and communication, as tools
for intellectual work and social activity, was not an invention of the mainstream computer
industry or orthodox computer science, nor even homebrew computerists; their work was
rooted in older, equally eccentric, equally visionary, work. You can't really guess where
mind-amplifying technology is going unless you understand where it came from.

- HLR
Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Ten:
The New Old Boys from the ARPAnet
Bob Taylor's office window at Xerox Corporation's Palo Alto Research
Center (PARC) overlooked the red-tiled towers of Stanford and the
flat roofs of research parks stretched out to the horizon. The
electronic window next to his desk overlooked another kind of world.
While he started talking to me, he was also interacting with
colleagues in his building and elsewhere in the global information
community.

In 1983, it was not unusual to see an executive, especially
a manager in a computer research organization, using a

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://www.parc.xerox.com/
http://www.parc.xerox.com/

personal computer in his office. The unique thing about this
personal computer was that it was an Alto -- the first
personal computer. Taylor and his group had been using it
since 1974. A small cable connected the Alto to the
Ethernet -- a medium that linked the researchers at PARC
with each other and with colleagues around the world.

The screen was taller than most computer displays, and it looked
different from other computer screens, even when seen from
across the room. Instead of a single screen-sized frame filled
with numbers or letters or graphs, there were a number of
squares of various sized, known in Xerox parlance as
windows, that looked like overlapping pieces of paper on a desk.
The symbols and images were also distinctly sharper than what I
was accustomed to seeing on a computer screen.

The mouse, an update of Engelbart's innovation, was
connected to the Alto with a thin wire. As Taylor slid the
mouse around the desk surface next to the screen, a small
dark pointer shaped like an arrow moved around the
screen. When he clicked one of the buttons on top of the mouse
or moved the pointer into a margin, the pointer changed shape
and things happened on the screen. In 1984, Apple corporation's
Macintosh computer introduced a mass market to this way of
handling an electronic desktop. To Taylor, it wasn't particularly
futuristic. Altos and Ethernets had been in operation since 1974
around here.

By 1983, Bob Taylor was only half-satisfied with his progress
toward what he and a few others set out to achieve twenty years
ago, because he believed that the new technology was only
halfway built. Despite the fact that the office he was sitting in, the
electronic workstation at his fingertips, and the research
organization around him were functioning examples of what the
augmentation community dreamed about decades ago, Taylor
thought that it might take another ten or twenty years of
hard work before the interactive informational communities
foretold by Bush and Licklider would truly affect the wider
population.

In 1965, at the age of thirty-three, Robert Taylor worked out of
his office in the Pentagon, as deputy director, then as director, of
the ARPA Information Processing Techniques Office. His job was to
find and fund research projects involving time-sharing, artificial
intelligence, programming languages, graphic displays, operating
systems, and other crucial areas of computer science. "Our rule of
thumb," he remembers, "was to fund people who had a good
chance of advancing the state of information processing by an
order of magnitude."

Bob Taylor was also responsible for initiating the creation of the

http://www.rheingold.com/vc.book

ARPAnet -- the prototype network community of computers (and
minds) created by the Department of Defense, an effort that
began in 1966 and became an informal rite of passage for the
nucleus of people who are still advancing the state of the
computing art. Larry Roberts, who was responsible for getting the
network up and running, succeeded Taylor when Taylor left ARPA
in 1969. After a year at the University of Utah, Taylor joined the
research effort Xerox Corporation was assembling near Stanford.

In 1970, a combination of growing opposition to the
Vietnam war, and the militarization of all ARPA research,
meant that an extraordinary collection of talent in the new
fields of computer networks and interactive computing were
looking for greener pastures at a time when one corporation
decided to provide the greenest pastures imaginable.

In 1969, Peter McColough, CEO of Xerox Corporation,
announced his intention to make Xerox "the architect of
information" for the future. To that end, a research
organization was assembled in Palo Alto, in the early 1970s.
McColough put a man named George Pake in charge. One of the
first things Pake did was hire the best long-term computer
visionary, research organizer, and people-collector he could find --
Bob Taylor. At first, the newly recruited engineers, hackers, and
visionaries worked in temporary quarters located in the Palo Alto
flatlands, near the Stanford University campus. In the mid 1970s
construction began on a prime piece of ground above Hewlett-
Packard, next to Syntex, in that fertile enclave known as "The
Stanford Industrial Park."

If there was ever a model environment for the technological
cutting edge of the "knowledge sector," PARC was it. From
the physicists in the laser laboratories and the engineer-artisans in
the custom microchip shops to the computer language designers,
artificial intelligence programmers, cognitive physiologists, video
jockeys, sound engineers, machinists, librarians, secretaries,
cooks, janitors, and security guards, you got a nice, model-
utopian feeling from everybody you encountered.

The physical plant itself is an inescapable exercise in
innovation. It took me a while to stop thinking of the place
as being upside down. Since the terraced glass-and-concrete
structure was built halfway embedded in Coyote Hill, Zuni Pueblo
style, the main entrance is on the top floor. To get to the second
floor from the ground floor, you go down. The linked quadrangles
of offices, laboratories, and meeting rooms wind around atriums
and gardens. The cafeteria overlooks Palo Alto; you can take your
tray out to the terrace and look down on the bay from the vantage
of this twenty-first-century cliff dwelling.

Off the corridors that wind around the quadrangles are office
cubicles, many with their doors open. Inside the open cubicles,

various people talk on telephones or stare at their distinctively
oblong Alto screens. Some cubicles have plants, posters, bean-bag
chairs (advertisement), stereos, bicycles. They all have
bookshelves with rows of books and the bright blue and white
binders used on the reports PARC publishes for the outside world.
Many of the cubicle dwellers are young. A larger proportion of
them than you might expect are women. It has always been a
multinational-looking crowd.

I had no problem distinguishing Taylor from the assorted
scientists, engineers, professors, hackers, longhairs, and boy and
girl geniuses around him. The few differences in style were subtle
but visible, nevertheless. While many of his colleagues opt for
sandals, down jackets, techno-hippie ponytails, blue jeans, and
rumpled cords with or without bicycle clips, Taylor is likely to be
found in a pressed tweed jacket and unrumpled slacks. His blond
hair is casual but neat. When he's trying to see if you are
following his line of thought, he tilts his forehead in your direction
and targets you with pale blue eyes over what would pass for
granny glasses if his shirt were denim instead of oxford cotton. He
smiles often, sometimes as a form of punctuation. A trace of
Texas drifts into his voice at times.

It is Taylor's belief that the idea of personal computing was a
direct outgrowth of what Licklider started in the early 1960s with
time-sharing research. Time-sharing, like the first high-level
languages, was a watershed for computer science and for
the augmentation approach. It also created a new
subcommunity within the computation world, a community
of interests that cut across the boundaries of military,
scientific, academic, and business computing. It was a
relatively small subculture within the larger community of
computer scientists and computer systems builders. They were
bonded by a common desire for a certain kind of computer they
wanted for their own use, and by a decade of common
experiences as a part of the ARPA research effort to build the kind
of computers they were then using. Many of the time-sharing
veterans who started out as undergraduate hackers at project MAC
or as ARPA-funded engineers in Berkeley and Santa Monica were
to meet later, in the research sanctums of Bell, SRI, Rand, and
(mostly) at PARC.

Time sharing was an early and effective application of the
philosophy that the existing means of using computers
should be tailored to the way people function, rather than
forcing people who want to use them to conform to
mechanical constraints. Without the development of
multiaccess computing in the early sixties, the idea of
personal computing would never have been more than a
dream.

In the early 1960s, data processing was what one was expected to

http://www.thebeanbagchairoutlet.com/
http://www.thebeanbagchairoutlet.com/

do with a computer, and one hardly ever did it directly. First, a
program and its raw data had to be converted to a shoebox full of
punched cards. The cards were delivered to a data processing
center, where a system administrator decided how and when they
were to be fed into the main computer. (These fellows were, and
still are, a rich source of anecdotes in support of the
"programming priesthood" mythology.) You came back an hour or
a day or a week later and retrieved a thick printout and a hefty
bill. The keypunch-submit-wait-retrieve ritual was called "batch
processing."

By 1966, groups in California and Massachusetts were well on the
way toward raising the art of computer programming to a high
enough level to do some truly interesting things with computers.
Licklider and a few others suspected that if they could make the
power of computers more directly accessible to people writing and
running programs, programmers might be able to construct new
and better kinds of software at far greater speed than heretofore
possible.

Among the capabilities that came with the increasingly
sophisticated electronic hardware and software were powers to
model, represent, and search through large collections of
information. With sufficient speed and memory capacity,
computers were gaining the power to assist the creative aspects of
communication. But serious obstacles had to be overcome to bring
that power out where people could use it.

It is hardly possible to interact dynamically with your program
when you have to dump boxes of punchcards into readers, then
decipher boxes of printout. Since a large part of the process of
building a program is a matter of tracking down subtle errors in
complex lists of instructions, the batch processing ritual put an
effective limit on how much programmers could do, how fast they
could do it, and the quality of the programs they could produce.

Batch processing created two problems: The computers could
handle only one program (and one programmer) at a time, and
programmers weren't able to interact directly with the computer
while their programs were running. Time-sharing was made
possible because of the enormous gap between the speed of
computer operations and the rate of information transfer needed
to communicate with a human. Even the fastest typist, for
example, can enter only a single keystroke in the length of time it
would take the computer to perform millions of operations. Time-
sharing gives each of the 20, 50, or 100 or more people who are
using the computer the illusion that he or she has the computer's
exclusive "attention" at all times, when in reality the computer is
switching from one user's task to another's every few millionths of
a second.

When the first programmers gained interactive access to the
computer, they also gained a new freedom to create ever more
powerful programs and see the results more quickly than ever
before. Programmers of the first multiaccess computers of the

sixties were able to submit programs a piece at a time and receive
responses a piece at a time, instead of trying to make the whole
programming job work, for better or worse, in a single batch. By
eliminating the "wait and see" aspect of batch-processing,
time-sharing made it possible for programmers to treat
their craft as a performing art.

"When I became director of the ARPA Information Processing
Techniques Office, the time-sharing programs were already
running," Taylor recalls, "but they weren't complete, so the work
continued while I was director. It was clear, though, that this was
an important breakthrough in information processing technology,
so I became involved in the technology transfer between the
different experimental systems, and eventually to military and
civilian computer applications.

"We came up against some rigid attitudes when we talked to
many people in the industry. IBM ignored the ARPA stuff at first.
They simply didn't take it seriously. Then GE agreed to cooperate
with MIT and Bell Laboratories to develop and market a large
time-sharing system. IBM said, 'Whoops, something's happening
here,' and they went off with a crash project to retrofit one of
their 360 systems to time-sharing. They took orders for a few and
the system bombed. They couldn't make the software work
because hadn't been down the same roads that the ARPA funded
groups had been down years before."

Time-sharing research caused a kind of schism in the
corporate research field. The first-generation priesthood
seemed to be missing out on the inside action, for a change.
Companies that paid attention to the time-sharing experience
gained in the long run. It made Digital Equipment the "second
name" in the industry. DEC paid attention to the ARPA-funded
work and hired people when they got out of school, and profited
from time-sharing.

The first thing Taylor went after, once the time-sharing project
was on its way to completion, was a way of interconnecting the
time-sharing communities. He had a privileged overview of the
then-fragmented computer research world, since a good deal of
his time was spent traveling to universities and think tanks,
finding and funding researchers. Progress in the separate subfields
of computer research was accelerating through the early 1960s.
By 1966, the time was approaching when the pieces of the puzzle
would be ready for assembly, and the separated teams would
have to be in close communication.

"Within each one of the time-sharing communities people were
doing a variety of different kinds of computer research," says
Taylor, "so the overall project of making the time-sharing system
itself work was much more global than any one of the individual
research fields that were being explored by different members of
the time-sharing community -- AI research, computer hardware
architecture, programming languages, graphics, and so forth.

"We were surprised time and time again by applications of
the time-sharing system that nobody planned but
somebody invented anyway. The ability to have files and
resources within a time-sharing system was one difficult problem
to be solved. On the way to solving it, people discovered a new
way of communicating with each other -- something that was
unexpected and became a unique medium in the research
community." Fifteen years since computer jockeys started having
fun with it, that medium has become the commercial version
known as "electronic mail."

Taylor saw the necessity of connecting to one another those
isolated research communities that Licklider had seeded and
Sutherland had nurtured. Many of the people in related fields but
different institutions knew of each other, and many more did not.
By 1956-1966, ARPA was supporting most of the nonindustrial
systems research in the country, and thus Bob Taylor and his
colleagues had a more up-to-date and comprehensive picture of
the state of computer research than any individual researchers.

The people Taylor funded then undertook the planning and
creation of a network of computers, located in different
parts of the country, linked by common-carrier
communication lines, capable of sharing resources and
interacting remotely with the growing community of
computer researchers. The people who were to build and
ultimately make use of the system began to get together in
person to talk about the technology needed to link resources in
the manner they envisioned. Instead of working in isolation, a
small group of leaders from the time-sharing research effort
began to work in concert to design the first on-line, interactive
communities.

A truly interoperating community capable of freely sharing
resources across the boundaries of individual machines or
geographical locations was more difficult to bring into existence
than is suggested by the simplified general idea of plugging
computers together via telephone lines. Very serious hardware and
software problems had to be solved, and the "user interface"
where the person meets the machine had to be further
humanized.

Every year, starting in 1966, following a tradition established by
Licklider and Sutherland, Taylor called a meeting of all the
principal investigators of all his projects. It would be held in a
dramatic place far removed from the usual locales of Cambridge,
Berkeley, or Palo Alto. With all these meetings, Taylor, who was
neither an engineer nor a programmer (he was, in fact, a
philosophy major and an experimental psychologist by
training), began the all-important mixing and sifting of ideas he
knew would be necessary to the cohesion of such a large,
dispersed, and ambitious project.

"I constructed the meetings so they all had to get to know
one another and argue with one another technically in my
presence," Taylor recalls. "I would ask questions that would
force people to take sides on technical issues. Lasting
friendships were built from the give and take. I asked them
difficult questions. Then, after they went back to their
laboratories and campuses, their communications increased
in both quality and quantity, because they knew each
other."

Taylor also initiated annual conferences of graduate students. The
best graduate students of the old ARPA researchers had meetings
of their own, away from the "older" folks like Taylor, who was,
after all, in his midthirties. Like the bands of roving builders who
planned the Gothic cathedrals of Europe, many of the computer-
system builders who participated in the ARPA grad students'
meetings were to meet again later at SAIL (Stanford Artificial
Intelligence Laboratory) and PARC, and later still at Apple and
Microsoft.

Taylor's idea of connecting the researchers by connecting their
computers was inspired by a phrase he read in one of Licklider's
1966 papers, in which he proposed the idea of a very large-scale
time-sharing system that he called "an intergalactic network."
Taylor took it a step farther: If you could build a communication
network, why not a computer network?

Instead of building larger numbers of longer-range communication
lines between terminals and their time-sharing systems, Taylor
saw potentially greater benefits in creating technology for different
time-sharing systems to communicate with each other over long
distances. Taylor sold ARPA on he idea, then hired a young Lincoln
Lab researcher named Larry Roberts as project manager. The
meetings and separate research projects continued for three
years, before the first bits were sent over the ARPAnet in 1969. By
this time, Taylor's opposition to the Vietnam war was growing, and
he was reasonably certain that the project he had initiated was
nearing completion, so he left ARPA.

While the number crunchers, batch processors, and electronic
bookkeepers continued to hold sway over the computer industry,
the core members of the interactive computing community were
beginning to experiment with their computers-and with
themselves -- through this unique new prototype of an
interconnected computer community. It quickly turned out, to
the delight of all participants and to nobody's surprise, that
the experimental network was evolving into a stimulating
environment for communicating and sharing research
information and even for transporting and borrowing
computer programs.

The implications for human communication that were beginning to
emerge from the experience of this computer-connected research
community were discussed in an article published in April, 1968,
titled "The Computer as a Communication device." The principal
authors were none other than J.C.R. Licklider and R. Taylor.

Although the Department of Defense had an obvious interest in
fostering the development of the technology they created in the
first place, and the interconnection of computers had certainly
become a necessity in conducting advanced weapons research,
Licklider and Taylor were not applying the network idea to
the Strategic Air Command or nuclear weapons research,
but to the everyday communications of civilians.

The authors emphasized that the melding of communication and
computation technologies could raise the nature of human
communication to a new level. They proposed that the ability
to share information among the members of a community
and the presence of significant computational power in the
hands of individuals were equal components of a new
communicating and thinking environment they envisioned
for the intermediate future. The implications were profound,
they felt, and not entirely foreseeable: "when minds interact,
new ideas emerge," they wrote.

The authors did not begin the article by talking about the
capabilities of computers; instead, they examined the human
function they wished to amplify, specifically the function of
group decision-making and problem-solving. They urged that
the tool to accomplish such amplification should be built according
to the special requirements of that human function. In order to
use computers as communication amplifiers for groups of people, a
new communication medium was needed: "Creative, interactive
communication requires a plastic or moldable medium that can be
modeled, a dynamic medium in which premises will flow into
consequences, and above all a common medium that can be
contributed to and experimented with by all."

The need for a plastic, dynamic medium, and the requirement that
it be accessible to all, grew out of the authors' belief that the
construction and comparison of informational models are central to
human communication. "By far the most numerous, most
sophisticated, and most important models," in Licklider's and
Taylor's opinion, "are those that reside in men's minds."

Collections of facts, memories, perceptions, images, associations,
predictions, and prejudices are the ingredients in our mental
models, and in that sense, mental models are as individual as the
people who formulate them. The essential privacy and variability
of the models we construct in our heads create the need to make
external versions that can be perceived and agreed upon by
others. Because society, a collective entity, distrusts the modeling

done by only one mind, it insists that people agree about models
before the models can be accepted as fact.

The process of communication, therefore, is a process of
externalizing mental models. Spoken language, the written
word, numbers, and the medium of printing were all significant
advances in the human ability to externalize and agree upon
models. Each of those developments, in their turn, transformed
human culture and increased collective control over our
environment. In this century, the telephone system added a
potent new modeling medium to the human communication
toolkit. Licklider and Taylor declared that the combination of
computer and communication technologies, if it could be
made accessible to individuals, had the potential to become
the most powerful modeling tool ever invented.

As an example of how a prototype computer communication
system could be used to boost the process of decision-making,
Licklider and Taylor described an actual meeting that had taken
place on just such a system. It was a project meeting involving
the members of a computer-science research team. Although all
the participants in the meeting were in the same room, they spent
their time looking at their display screens while they talked. A
variety of diagrams, blocks of text, numbers, and graphs passed
before their eyes via those screens.

The facility was, in fact, Doug Engelbart's Augmentation Research
Center. The machine in another room that made the meeting
possible was the latest kind of multiaccess computer that the
time-sharing research of the last few years had produced.

Using the project meeting as a model, Licklider and Taylor showed
how computers could handle the informational housekeeping
activities involved with a group process. More importantly, they
demonstrated how this subtle kind of communication
augmentation could enhance the creative informational activity
that took place. The ability to switch from microscopic details to
astronomical perspectives, to assemble and reassemble models, to
find and replace files, to cut and paste and shuffle, to view some
information publicly and make private notes at the same time, to
thumb through the speaker's files or check his references while he
is talking, made it possible for people to communicate with each
other through the computer system in a way not possible in a
nonaugmented meeting.

"In a few years," the authors predicted, in the very first
words of their article, "men will be able to communicate
more effectively through a machine than face to face."
Referring to their model technical meeting at SRI, Licklider and
Taylor estimated that "In two days, the group accomplished with
the aid of a computer what normally might have taken a week."

This small group -- the people together with the hardware and

software of a multiaccess computer -- constituted what Licklider
and Taylor identified as one node of a larger, geographically
distributed computer network. The key idea, Taylor and Licklider
now recall, had been proposed by Wesley Clark in a cab ride
to Dulles Airport, after a 1966 meeting about the network Taylor
was trying to put together. The problem lay in deciding which
levels of the existing computer and communication systems had to
be changed to couple incompatible machines and software.

Many of the planners believed that a huge "host" computer
in the center of the country would have to be specially
designed and programmed to act as a translator. Clark
suggested that a small, general-purpose computer at each
node could be turned into a "message processor." Through
long distance common-carrier communications, these "interface
message processors" (known eventually as "imps") and their local
multiaccess computer communities could be integrated into a kind
of supercommunity.

The imps would take care of all the behind-the-scenes traffic
controlling and error-checking functions needed to ensure accurate
transmission of data -- a significant task in itself -- so the
individual users wouldn't have to worry about whether the files
they want to read or the programs they need to use are a
thousand miles away or down the hall.

The resulting communication system became part of a new kind of
computing system that was not confined to any single computer.
Teams of ARPA-supported scientists found that they could invoke
the use of a program residing in a computer located in Berkeley,
California, feed the program with data stored in Los Angeles, then
display the result in Cambridge, Massachusetts. The network
was suddenly more important than the individual
computers, as the computers became "nodes" in a
geographically distributed supercomputer.

It began to be possible to think of a computer network that was
not centrally controlled from any one place, in which the traffic
control and data communication and behind-the-scenes number
crunching required were invested in the software instead of the
hardware. Instead of a huge host computer in the center of it all
that received a stream of information from one computer,
translated the stream into a form that could be decoded by
another computer, and relayed the translated information to the
receiving computer, the smaller imps at each node would accept
and pass along information packets that had been translated into
a common format by the imp connected to the originating
computer.

The controlling agent in a "packet switched" network like
the ARPAnet was not connected to a central computer
somewhere, nor even the "message processors" that mediated

between the computers, but the packets of information, the
messages themselves. Like the addresses on letters, the code
by which information was packaged for transmission put into each
packet all the information necessary for getting the message from
origin to destination, and for translating between different kinds of
computers and computer languages.

While the networking technology was evolving rapidly the number
of computer terminals proliferated and the accepted way of using
computers was beginning to change. By 1968, the punchcards and
printouts of 1960 were being replaced by ever-more interactive
means of communicating with the computer: a keyboard and
teletype printer and, in some exotic quarters, a graphic display
screen were becoming standard input and output devices for
programmers.

To old-liners who were used to submitting punched cards and
receiving machine code printouts on huge fanfolds from line
printers, the ability to type a command on a keyboard and see the
computer's immediate response on their own printer was nothing
short of miraculous. Through the rapidly spreading use of time-
sharing, many people were able to use individual terminals to
directly interact with large computers. To these who knew about
the plans to connect their time-sharing communities into a
supercommunity, 1968 was a time of exciting and rapid change
in a field that was still virtually unknown to the outside world.

The idea of a community that could be brought into
existence by the construction of a new kind of computer
system was perhaps the most radical proposal in the 1968
paper. The ARPAnet was not on-line until 1969, but at that point
the time-sharing groups had constructed enough of the
superstructure for the outlines of the new network to be known
and visible.

Taylor and Licklider were more concerned about the further
development of this test-bed for advanced communications and
thought amplification than they were dedicated to the use of the
network as an operational entity for conducting weapons research.
Writing with the knowledge that ARPAnet was to begin operation
within a year, and would probably be unknown outside defense or
computer science circles, Licklider and Taylor pointed out:

. . . Although more interactive multiaccess computer systems are
being delivered now, and although more groups plan to be using
these systems within the next year, there are at present perhaps
only as few as half a dozen interactive multiaccess computer
communities.

These communities are socio-techno pioneers, in several ways out
ahead of the rest of the computer world: What makes them so? First,
some of their members are computer scientists and engineers who
understand the concept of man-computer interaction and the
technology of interactive multiaccess systems. Second, others of their
members are creative people in other fields and disciplines who
recognize the usefulness and who sense the impact of interactive

multiaccess computing upon their work. Third, the communities have
large multiaccess computers and have learned to use them. and
fourth, their efforts are regenerative.

The authors were looking beyond the networks of their day, and
the computer systems that were commercially available, to the
technology they knew would be possible and affordable on a large
scale within decades. Convinced that the technology they and their
colleagues had created, and the community of users that had
grown up around that technology, were the forerunners to far
more powerful and more widely usable systems, they called for
the development of a version of certain time-sharing systems into
a tool that could be used to amplify human communications:

. . . These new computer systems we are describing differ from other
computer systems advertised with the same labels: interactive, time-
sharing, multiaccess. They differ by having a greater degree of open-
endedness, by rendering more services, and above all by providing
facilities that foster a working sense of community among their users.
The commercially available time-sharing services do not yet offer the
power and flexibility of software resources -- the "general
purposeness" -- of interactive multiaccess systems of the System
Development Corporation in Santa Monica, the University of California
at Berkeley, Massachusetts Institute of Technology in Cambridge and
Lexington, Mass. -- which have been collectively serving abut a
thousand people for several years.

The thousand people include many of the leaders of the ongoing
revolution in the computer world. For over a year they have been
preparing for the transition to a radically new organization of
hardware and software, designed to support many more simultaneous
users than the current systems, and to offer them -- through new
languages, new file-handling systems, and new graphic displays --
the fast, smooth interaction required for truly effective man-computer
partnership.

Time-sharing, tremendously exciting as it was to programmers,
was seen as only a means to an end by those who were aiming to
build communication amplifiers. To those who were gung-ho about
the future of multiaccess computing, Taylor and Licklider talked
about the ultimate goal of the various projects they had
initiated: the creation of tools to enhance the thinking of
individuals and augment communications among groups of
people.

Engelbart's group at SRI, Ivan Sutherland's computer graphics
work at MIT and Harvard, David Evans and his students at the
University of Utah, the Project MAC hackers at MIT, and other
groups scattered around the country were constructing pieces of a
whole new technology. Foreseeing the day when such systems
would be practical on a large scale, Licklider and Taylor reminded
their colleagues that the new information processing technology
could revolutionize not only research centers and universities, but
offices, factories, and ultimately schools and homes.

Looking toward what was then the long-term future, Licklider and
Taylor projected a positive attitude about the possible impact of
supercommunities that might include not only computer scientists

and programmers but housewives, schoolkids, office workers and
artists:

But let us be optimistic. What will on-line interactive
communities be like? In most fields they will consist of
geographically separated members, sometimes grouped in small

clusters and sometimes working individually. They will be
communities not of common location but of
common interest. In each field, the overall community of
interest will be large enough to support a comprehensive system of
field-oriented programs and data.

In each geographical sector, the total number of users -- summed
over all the fields of interest -- will be large enough to support
extensive general-purpose information processing and storage
facilities. All of these will be interconnected by telecommunications

channels. The whole will constitute a labile network of
networks -- ever changing in both content and
configuration.

The authors envisioned the creation of an interconnected system
of software-based tools that would provide "investment guidance,
tax counseling, selective dissemination of information in your field
of specialization, announcements of cultural, sport, and
entertainment events that fit your interests, etc. In the later group
will be dictionaries, encyclopedias, indexes, catalogues, editing
programs, teaching programs, testing programs, programming
systems, data bases, and -- most important -- communication,
display, and modeling programs." They could have been describing
from life the facilities that were available at PARC, ten years later.

Licklider and Taylor were most emphatic that the impact would be
great, on both individuals and organizations, when all the
elements, which they could only speculate about in 1968, were
perfected sometime in the future:

First, life will be happier for the on-line individual
because the people with whom one interacts most
strongly will be selected more by commonality of
interests and goals than by accidents of proximity.
Second, communication will be more effective, and
therefore more enjoyable. Third, much communication will
be with programs and programmed models, which will be (a) highly
responsive, (b) supplementary to one's own capabilities, rather than
competitive, and (c) capable of representing progressively more
complex ideas without necessarily displaying all the levels of the
structure at the same time -- and which will therefore be both

challenging and rewarding. And fourth, there will be plenty
of opportunity for everyone (who can afford a
console) to find his calling, for the whole world of
information, with all its fields and disciplines, will be open to him
-- with programs ready to guide him or to help him explore.

For the society, the impact will be good or bad,

depending mainly on one question: Will "to be on-
line" be a privilege or a right? If only a favored
segment of the population gets a chance to enjoy
the advantage of "intelligence amplification," the
network may exaggerate the discontinuity in the
spectrum of intellectual opportunity.

On the other hand, if the network idea should
prove to do for education what a few have
envisioned in hope, if not in concrete detailed plan,
and if all minds should prove to be responsive,
surely the boon to humankind would be beyond
measure.

Strangely lyrical and surprisingly romantic prose coming from two
computer-research organizers in the Pentagon. But by 1971, when
Taylor recruited fifty or sixty of the best people in the field for the
Computer Science Laboratory at PARC, the cream of the
interactive computer designers had enough engineering and
software research behind them from the time-sharing and
ARPAnet projects to make them confident that such a utopian
scenario might be possible -- especially if a corporation with the
resources of Xerox was willing to take the high-stakes gamble.

The people who built the first interactive, multiaccess computers,
the first intellectual augmentation systems, and the first packet-
switching computer networks were gathering under the same roof
for the first time, in order to turn those dreams into prototypes as
soon as possible. Butler Lampson, Chuck Thacker, Jim Mitchell, Ed
McCreight, Bob Sproull, Jim Morris, Chuck Geschke, Alan Kay, Bob
Metcalfe, Peter Deutsch, Bill English -- to those who knew
anything about the esoteric world of computer design, the PARC
computer science founders constituted an unprecedented collection
of talents.

It wasn't the kind of shop where old-style hierarchies and pecking
orders would do any good. You don't run an outfit like that as
much as you mediate it -- which is where Bob Taylor came in.
The kind of thing they were building, and the kind of people it
took to build it, required a balance between vision and
pragmatism, the kind of balance that couldn't be enforced by
artificially imposed authority.

What they all agreed upon was what they wanted to get their
hands on, in the way of a first-rate research facility. The potential
of computers as tools to be used by individuals, and the
communications possibilities opened by linking computers, were
what motivated the PARC team. It was time to demonstrate that
the theories about using personal computers to manage personal
communications could work in an office like theirs. If they could
demonstrate that such devices could speed their own work, they
would be on the way to selling the rest of the world on the vision

they held form the time-sharing days.

The first thing they needed in order to retool the world of
information work was a computer designed for one person to use,
something that went far beyond previous attempts. Because they
knew that vision was the human sense capable of the most
sophisticated informational input, the PARC computerists knew
they wanted a sophisticated graphic screen to bring the
computer's power to the user. Complex, dynamic, visual models
required a large amount of computer power, so the decision to
emphasize the visual display meant that the hardware
would have a great deal more memory and speed than
anyone else in the computer world had heretofore put at
any one individual's command.

"We wanted hardware as capable as we could afford to build,"
Taylor recalls, "because we needed capable computing tools to
design an entire software architecture that nobody in the world yet
knew how to make. We wanted for our own use what we thought
other information workers would eventually want. We needed the
computing power and the research environment to build
something expensive but very flexible and growable that would
someday be much less expensive but even more capable. We all
understood when we planned the Alto that the main memory of
what we wanted might cost $7000 by the time it was produced, in
1974, but would drop to about $35 ten years later."

The hardware shop at PARC was only set up to produce small
batches for the PARC software designers, but eventually 1500
Altos were built for Xerox executives and researchers, for
associates at SAIL and SRI, as well as for the U.S. Senate, House
of Representatives, certain other government agencies, and even
the White House Staff. It was the first machine designed to put
significant computing power on a person's desk.

The job the Alto designers did was all the more remarkable when
compared with the first "personal computers" the outside world
was to learn about years later. The 1975 Altair, the granddaddy of
the homebrew computers, had all of 1/4K main memory (also
known as RAM, this represents the amount of storage space the
computer devotes to "working memory," and thus indicates the
rough limit of how much work it can do with reasonable speed).
The first Apple models sold, in 1977, had 8K. When IBM
introduced its personal computer, in 1981, the standard model
had 16K. The Alto, in 1974, started with 64K and was soon
upgraded to 256K. The distinctive bit-mapped screen and the
mouse pointing device weren't to be seen on a non-Xerox product
until 1983, when Apple produced Lisa.

The hardware, of course, was just a part of the story. These
devices were built for the people whose job it was to create
equally spectacular software innovations. And the personal
computers themselves weren't enough for those who longed for
the kind of community they had known with the ARPAnet.

"We didn't start talking about the hardware and software until we
talked about what we wanted to do personally with such a
system," Taylor remembers. "We knew there were technical
problems to solve, and we would challenge them in due time.
First we had to consider the human functions we wanted to
amplify. For example, people use their eyes a great deal to
assimilate information, so we wanted a particularly powerful kind
of display screen. Then all the time-sharing veterans insisted they
wanted a computer that didn't run faster at night."

What Taylor meant was that the time-sharing programmers had
all been accustomed in the mid 1960s to doing their serious
computing in the middle of the night, when the amount of traffic
on the central computer was light enough to perform truly large
information processing tasks without delay. The first radical idea
they agreed upon was that each Alto had to have as much main
memory as one of the central computers from the time-sharing
systems of only a few years back. And it had to be fast.

"People can give commands to a computer much more rapidly and
easily by seeing and pointing than by remembering and typing, so
we adopted and then adapted the mouse," added Taylor. "It is
hard for people to learn artificial languages and even harder for
machines to learn natural languages. The existing computer
languages didn't give first-time users and experimental
programmers equal power to interact with the computer, so we
created new kinds of languages."

"Most importantly, people often need to do things in groups. There
are times when we want to use the Alto as a personal tool, and
times when we want to use it as a communication medium, and
times when we want to do both. Our purpose in bringing all
that computing power to individuals was not to allow them
to isolate themselves. We wanted to provide the gateway to
a new communication space, and ways to fly around in it, and
a medium for community creativity, all at the same time."

When time-sharing first got going, and hackers began to
proliferate late at night in the corners of university computer
departments, the subcult of computerists found that while they
could all communicate with the central computer at the same
time, they couldn't all necessarily communicate with each other, or
share each other's programs or files. It took some effort, but the
time-sharing systems programmers eventually solved the problem.

The solution to the difficult problem of sharing resources among
different users of a multiaccess computer became no less difficult
when it had to be translated to the problem of sharing resources
between many equally powerful, geographically separated, often
incompatible computers (as with ARPAnet). The carefully designed
connectivity of time-sharing could not be patched onto the new
system.

The PARC network had to be built from the ground up, along with

the personal workstations and shared servers for filing, printing,
and mail. The server notion meant that certain otherwise stock-
model Altos would be programmed for the tasks of controlling
these network services, instead of building separate devices to
perform these tasks. The concept of the resulting Ethernet, as it
was called, stemmed from the determination to make the network
itself a tool at the command of the individual user.

The PARC folks were hungry for personal computing power, but
they didn't want to give up that hard-won and effort-amplifying
community they were just beginning to know on the ARPAnet. Dan
Swinehart, an SRI alumnus who joined PARC early in the game,
remembers that "From the day the Alto was proposed, Butler
Lampson and Bob Metcalfe pointed out that if we were going to
give everybody at PARC a self-contained computer instead of
hooking them all into a central time-sharing system, we'd need a
connecting network with enough communicating and resource-
sharing capability that the people at the personal work stations
wouldn't be isolated from each other."

Thus, the companion to the ALTO was the Ethernet, the first of the
"local area networks." With the advent of network technology, the
hardware became less important and the software became more
important, because such a network consists of a relatively simple
hardware level, where a small box plugs the individual computer
into the network, and a series of more sophisticated software
levels known as protocols that enable the different devices to
interoperate via a communication channel.

With common-carrier networks -- the kind where teenage hackers
use their telephones to gain access to Defense Department
computers -- the small box is known as a modem and works by
translating computer bits into a pattern of tones that the public
telephone system uses to communicate information. A local area
network uses a different kind of small box that converts computer
data into electrical impulses that travel from computer to
computer via a short cable, rather than the audio tones that are
sent over common-carrier communication lines.

Local area networks are meant for environments like PARC -- any
campus or laboratory or group of offices where many machines
are distributed over a small geographical area. Several local
networks can also be linked over long distances via "message
processors" known as gateways to the common-carrier-linked
internetwork. This scheme embeds local networks in more global
supernetworks.

Today's network technologies use the packet-switching techniques
originally developed during the creation of the ARPAnet -- exactly
the kind of coding of information that Shannon predicted in
1948. Information is transported and processed in packets of
information -- bursts of coded on-off pulses -- that carry, in
addition to the core data of the message, information on how the
message is to be transmitted and received. If your computer uses

the right kind of hardware and software translators, your data will
find its own way through the network according to the control and
routing information embedded in the packets.

The technical details of packet switching won't matter to the vast
majority of the people who will end up using network systems in
the future, but the notion of "distributed computing" signals an
important change to a new phase in the evolution of computation.
Distributed systems, in which a number of people, each with their
own significantly powerful personal computers, join together into
even more powerful computational communities, are altogether
different from the centrally controlled and highly restricted
computers of the early days.

Where we will all choose to go, or be forced to go by human
nature or historical circumstances, once we are given access to
such a system, is a wide-open question, once you get beyond the
revolutionary but relatively simple applications to office work.
Almost all the augmentation pioneers now use the analogy
of the early days of automobiles to describe the present
state of the system. Engelbart and Taylor agree that the
personal computers millions of enthusiasts are using today are not
even at the stage the automobile industry reached with the model
T. More important, there is not yet a widespread
transportation support structure for the messages between
individuals.

There are no standard ways to build or drive the informational
vehicles that have been devised only recently. The existing
highways for large-scale, high-bandwidth information
transportation don't even cover a fraction of the countryside.
There are no service stations or road maps. The tire industry and
the petroleum industry of the knowledge age don't exist yet. There
may be prototypes of mind-extending technologies at places like
PARC, but there is not yet an infrastructure to support their use in
wider society.

The researchers at PARC were wildly successful in their efforts to
build powerful personal computers, years before the business and
consumer communities were prepared to accept them, but Xerox
marketing management failed to take advantage of the head start
achieved by their research and development teams by quickly
turning the prototypes into products. The failure of Xerox to
exploit the research at PARC was partially a result of the lack of
the kind of infrastructure described by the automobile analogy.
Technology transfer in such a fast-moving field as microelectronic
devices is a tough enough gamble. The problem gets more
complicated when those devices are intended to affect the way
people think. Building a system from scratch and showing
that it works is still a long way from convincing most of the
people in the work force to change the way they've always
done things.

By the mid 1970s, the nation's smartest computer researchers
realized that the Alto, Ethernet, and Smalltalk (an equally
advanced computer language) prototypes created at PARC had
advanced the state of interactive computing far beyond the level
achieved by the ARPA-sponsored time-sharing projects that had
revolutionized computers a decade previously. By the late 1970s,
Xerox management was ready to think about turning PARC's
successes into a product.

While the PARC whiz kids raced ahead on advanced research into
dozens of information-related sciences and technologies, the Star
and the Ethernet were readied for market. Star was designed to
be much more than a production-model Alto: The main memory
was 512K, twice as much as the enhanced Alto, and the Star's
processor was built to run three times as fast as the Alto. The
Star's software included a language named Mesa (created in
Taylor's lab), along with a whole toolkit of application programs for
editing, filing, calculating, computing, creating graphics,
distributing electronic mail.

One of the clichÈs of the computer industry in the early 1980s was
that "if Xerox had marketed the Star when it was technically ready
to go, they would have stolen an industry out from under IBM and
Apple." As it happened, April, 1981, when the Star 8010
Information System was announced, was still too early for the
larger segments of office professionals to realize that they were
information workers. Xerox marketing management insisted that
the workstation was not only a breakthrough in providing tools for
individuals, but a part of an integrated office system of
interconnected components that shared mail, printing, and filing
services. But nobody outside a few privileged test sites knew
what that meant.

Until word processing came out of nowhere (as far as the people
in offices were concerned) to replace most of the typing pools in
the early 1980s, it wasn't clear to the people who bought office
equipment for corporations that computers and office workers
were bound to get acquainted rapidly. To the first knowledge
workers at aerospace firms, it was very clear that there was a
major difference between these machines and the devices they
had formerly known as computers.

The place where the mind meets the machine, the long-neglected
frontier of computer development, was advanced to a new high
level by those at ARC and PARC who created the partially
psychological, partially computational engineering of the
user interface. The dreams of the augmentation pioneers were
finally materialized in the products of their students, who took the
first steps with the Star to engineer the machine to the minds of
the potential users. The Star designers reiterated the connection
between sophisticated visual representation and the ability to
amplify thought:

During conscious thought, the brain utilizes several levels of memory,

the most important being the "short-term memory." Many studies
have analyzed the short-term memory and its role in thinking. Two
conclusions stand out. (1) conscious thought deals with concepts in

the short-term memory . . . and (2) the capacity of short-
term memory is limited. . . . When everything
being dealt with in a computer system is visible,
the display screen relieves the load on the short-
term memory by acting as a sort of "visual cache."
Thinking becomes easier and more productive. A
well designed computer system can actually
improve the quality of your thinking. . . .

A subtle thing happens when everything is visible: the display
becomes the reality. The user model becomes identical with that
which is on the screen. Objects can be understood purely in terms of
their visible characteristics.

The idea that the right kind of computer systems could affect the
way people think -- the seed planted by Vannevar Bush and
nurtured by Licklider and Engelbart -- was not lost on the Xerox
interface builders. In regard to the principle that they called
"consistency," the Star team noted:

One way to get consistency into a system is to adhere to paradigms
for operations. By applying a successful way of working in one area
to other areas, a system acquires a unity that is both apparent and
real. . . .

These paradigms change the very way you think. They lead to new
habits and models of behavior that are more powerful and
productive. They can lead to a human-machine synergism.

After ten years, PARC had achieved its technological goals, and
more. The Mesa and Smalltalk languages were both significant
advancements of the software art. If bold and imaginative
research were all that the success of a company depended on,
Xerox would have been in a position to challenge even the
dominating force of the information industry. But Peter McCollough
was no longer the CEO, and Xerox top management failed to
comprehend the ten-year technological lead their research division
had handed them.

Some of the most important members of the starting team left
PARC in the early 1980s to join other companies or to start their
own firms. Such job changes at the higher levels of the electronics
and computer industries were far from unknown in Silicon Valley;
in fact PARC was distinguished from similar institutions for many
years because of the unusual lengths of time put in by its principal
scientists. But when Xerox failed to become the first name in the
industry, and the hobbyist side of personal computing had grown
to the point where some of the original hobbyists were recruiting
PARC scientists and building their own personal computer empires,
the first high-level PARC defectors began to seed the rest of
the industry with the user interface concepts embodied in
the Star.

Bob Metcalfe, the man responsible for the creation of the Ethernet,
left to start 3-Com, a company specializing in local area network
technology. Alan Kay, whose Smalltalk team made impressive
contributions to the Star interface, left to become the chief
scientist at Atari. John Ellenby, who helped reengineer the Alto 2,
became the chairman of Grid. In the fall of 1983, Bob Taylor
resigned, after thirteen years leading the laboratory team he had
built.

Several of the PARC alumni became associated with those industry
newcomers who had emerged from the homebrew computer days.
Some of the former whiz kids from PARC were making alliances
with the next generation of whiz kids. Charles Simonyi, by then in
his early thirties, who was in charge of producing the word
processing software for the Alto, left PARC to join Bill Gates, the
twenty-seven-year-old chairman of Microsoft, a company that
started out as a software supplier to the computer hobbyists in the
Altair days of 1975, and is now the second-largest microcomputer
software company in the world.

Steve Jobs, chairman of Apple, then in his late twenties, visited
PARC in 1979. He was given a demonstration of the Alto. Larry
Tesler, the member of the PARC team that gave Jobs that
demonstration, left PARC in 1980 and joined Apple's new secret
project that Jobs promised would redefine the state of the art in
personal computers. In 1983 Apple unveiled Lisa -- a machine that
used a mouse, a bit-mapped screen, windows, and other features
based on the Star-Alto-Smalltalk interface. The price for the
system was around $10,000. This was $6000 less than the more
powerful Star, but still hardly in the range of the consumer
market. In 1984, Apple brought out a scaled-down, cheaper
version of Lisa, the Macintosh, with the same user interface, and
revolutionized the personal computer market.

If time-sharing research had been the unofficial initiation
ceremony and the ARPAnet was the rite of passage, the PARC
era was the end of the apprenticeship era for the
augmentation community. New generations of researchers and
entrepreneurs were entering the software fray through the infant
computer industry. By the early 1980s, it didn't take a computer
prophet to see that big changes were going to continue to happen
as the mass market began to awaken to the potential of personal
computing. Although the hardware and the software of the first
tens of millions of personal computers fell far short of what the
PARC veterans were working toward, the stakes of the game
had changed with the emergence of a mass market.

The beginnings of a much wider computer-using community also
meant the end of arcane jargon and software designs that
required complex interactions with the computer. The design
principles demonstrated by the Star and the Lisa pointed the way
for the future computer designers. At PARC, they were already
onto the Dorado, the Dolphin, and other post-Star computers. Now
that truly capable computing machinery was becoming available, it

http://www.rheingold.com/texts/tft/1.html1

was becoming more widely known that the commercially
successful programs of the future would be those that succeeded
in bringing the power of the computer out to the person who
needs to use it.

The "rule of two" is, incredibly, still in effect, promising even more
powerful and less expensive computer hardware in the late 1980s.
In 1984, Bob Taylor, now with Digital Equipment Corporation,
started doing what he does best -- assembling a computer
systems research team for a final assault on the objective. Some
of the key members of his team were graduate students when
ARPA funded time-sharing, and had been involved in the ARC and
PARC eras. The latest arena for their ongoing effort to bootstrap
interactive computation technology to the threshold of truly
powerful personal computing was named "Systems Research
Center" -- or SRC, pronounced "circ" ("as in circus").

"Come to my office in five years," Taylor challenged me, at the
beginning of this gun-lap in the augmentation quest, "and I'll
show you a desktop machine twice as fast as the biggest, most
expensive supercomputer made today. Then it will become
possible to create the software that can take advantage of the
capabilities we've known about for a long time."

Taylor now believes that three factors will lead to the most
astonishing plateau in information processing we've seen
yet: first, a new level of systems software will be able to take
advantage of computer designs that make each personal
workstation into a kind of miniature distributed network,
with multiple parallel processors inside working in coordination;
second, large scale integration processors will be small and cheap
enough to put fast, vast memory into desktop machines;
third, and most important, the people who built time-sharing,
graphics, networks, personal computers, intelligent user interfaces,
and distributed computing are now at the height of their powers,
and they have put hundreds of thousands of person-hours into
learning how to build new levels of computer technology.

Advances in network technologies, graphics, programming
languages, user interfaces, and cheap, large-scale information
storage media mean that the basic capabilities dreamed of by the
designers of the first personal computers are likely to become
widely available before the turn of the century. One hopes that we
will be ready to use them wisely. It would be a sad irony if we
were to end up creating a world too complicated for us to manage
alone, and fail to recognize that some of our own inventions could
help us deal with our own complexity.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Eleven:
The Birth of the
Fantasy Amplifier

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/texts/tft/11.htm1

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Eleven:
The Birth of the Fantasy Amplifier
When millions of portable, affordable, imagination amplifiers fall into the
hands of eight-year-old children, look for Alan Kay somewhere in the
plot. He has always been too impatient to wait for someone else to bring
him what he wanted. And he's always found ways to create what he
wanted if it didn't exist. For the past fifteen years, his sights have been
set on handheld, full-color, stereophonic, artificially intelligent,
information representation toys. And he wants them by the tens of
millions. They don't exist yet, so he's enlisted some formidable allies to

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

help him create them.

Fame, fortune, or even the more esoteric career ambitions of top-notch
software professionals do not seem to motivate Dr. Kay, now a
"research fellow" for Apple, formerly "chief scientist" at Atari
Corporation. Becoming another Silicon Valley millionaire or
accepting the offer of an endowed chair at MIT have not
interested him as much as the prospect of putting the power to
imagine into the hands of every bright kid who got thrown out
of a classroom.

Ever since he learned to read at the age of two and a half, Alan Kay
has been accustomed to doing things his own way and letting the rest
of the world catch up later. At the same time he was close to flunking
out of the eighth grade, primarily for insubordination, he was one of
television's original "Quiz Kids." Ten years before he coined the term
"personal computer," before Atari or PARC existed, and before another
pair of bright insubordinates named Wozniak and Jobs created a new
meaning for that good old American word "Apple," Alan Kay was
demonstrating FLEX, a personal computer in all but name, to the ARPA
graduate students' conference.

Alan is now in his early forties, and is acknowledged by his peers, if not
yet the general public, as one of the contemporary prophets of the
personal computer revolution. Now his goal is to build a "fantasy
amplifier," a "dynamic tool for creative thought" that is powerful
enough, small enough, easy enough to use, and inexpensive
enough for every schoolkid in the world to have one. He has the
resources and the track record to make you believe he'll do it.

Alan Kay doesn't fit the popular image of the arrogant, antisocial
hacker, the fast-lane nouveau micromillionaire, or the ivory tower
computer scientist. He wears running shoes and corduroys. He has a
small, meticulous moustache and short, slightly tousled dark hair. He's
so imageless you could pass him in the halls of the places he
works and not notice him, even though he's the boss. Which
isn't to say that he's egoless or even modest. He loves to quote
himself, and often prefaces his homilies with phrases like "Kay's
number one law states"

When I first encountered him, between his stint as director of the
legendary "Learning Research Group" at Xerox PARC, and his present
position as a kind of "visionary at large" for Apple, Dr. Kay and his
handpicked team at Atari were working under tight secrecy, with a
budget that was rumored to be somewhere between $50 million and
$100 million, to produce something that nobody in the corporation ever
described to anybody outside the corporation. But anybody who has
ever talked to him, or read something he has written about his dreams,
can guess the general thrust of Kay's Atari project, and the probable
direction of his current work at Apple. He has been moving toward
realizing his dream, project by project, prototype by prototype,

innovation by innovation, ever since he was a graduate student.

Being the kind of person he is didn't make it easy for Alan to get an
education. At the beginning, he knew more than all of his classmates
and most of his teachers, and he didn't mind demonstrating it aloud --
a trait that got him thrown out of classrooms and beaten up on
playgrounds.

Fortunately for him and for all of us who may benefit from his creations
in the future, Alan was already well armored in his mind and
imagination, where it really counted, by the time his teachers and
classmates got ahold of him. For Alan, being ahead of everybody else
started out as a pleasure and quickly turned into a survival trait --
which meant he didn't do too well in school, or anyplace else, until the
summer of his fifteenth year, when "a music camp in Oneonta, New
York, changed my entire life."

Music became the center of his life. In many ways, it still is. He
commutes to Silicon Valley from his home in Brentwood, 300
miles away, mostly because he doesn't want to be away from
his homemade pipe organ for too long. And he still goes to music
camp every summer. He never understood why his two favorite toys --
books and musical instruments -- could not be combined into a single
medium capable of dealing with both sounds and symbols. He worked
as a professional jazz and rock guitarist for ten years. When it looked
like he was about to be drafted, Kay joined the U.S. Air Force as a
navigational cadet. In the Air Force, he "wore out a pair of shoes doing
insubordination duty," but he also learned that he had a knack for
computer programming.

After he finished his Air Force duty, the National Center for
Atmospheric Research was eager to use Kay's programming talent to
pay his way through the University of Colorado. He earned a degree in
biology, but his college grades were as mixed as they had always been,
because of his habit of concentrating intently on only those things that
interested him. Through what Alan now calls "sheer luck," he came to
the attention of somebody smart enough to actually teach
something to a smartass like Alan Kay -- and bold enough to
admit a student with an undergraduate record that read more
like a rap sheet than a transcript.

The man who gambled on Kay's checkered history in academia was
David Evans, the chairman of the computer science department at the
University of Utah, a place that was to become one of the centers of
the augmentation community by the mid-1960s. Like so many others
who assumed positions of leadership in the field of interactive computer
systems design, Evans had been involved in early commercial computer
research and with the ARPA-funded groups that created time-sharing.

"Those career pathways of ARPA project leaders and their graduate
students repeatedly intertwined," Kay recalls. "An enormous amount of
work was done by a few people who kept reappearing in different
places over the years. People frequently migrated back and forth from

one ARPA project or another. ARPA funded people rather than projects,
and they didn't meddle for an extended period. Part of the genius of
Licklider and Bob Sproull was the way this moving around contributed
to the growth of a community."

One of the people Evans managed to recruit for the Utah department
who had an impact, not only on Alan Kay but on the entire course of
personal computing was Ivan Sutherland, the graduate student and
protégé of Claude Shannon and J. C. R. Licklider who single-
handedly created the field of computer graphics as a part of his
MIT Ph.D. thesis -- the now legendary program known as
"Sketchpad."

People like Alan Kay still get excited when they talk about Sketchpad:
"Sketchpad had wonderful aspects, besides the fact that it was the first
real computer graphics program. It was not just a tool to draw things.
It was a program that obeyed laws that you wanted to be held true.
So to draw a square in Sketchpad, you drew a line with a lightpen and
said: 'Copy-copy-copy, attach-attach-attach. That angle is 90 degrees,
and these four things are to be equal.' Sketchpad would go zap! and
you'd have a square."

Another computer prophet who saw the implications of Sketchpad and
other heretofore esoteric wonders of personal computing was an
irreverent, unorthodox, counterculture fellow by the name of Ted
Nelson, who has long been in the habit of self-publishing quirky,
cranky, amazingly accurate commentaries on the future of computing.
In The Home Computer Revolution Nelson had this to say about
Sutherland's pioneering program, in a chapter entitled "The most
important computer Program Ever Written":

You could draw a picture on the screen with the lightpen -- and then file
the picture away in the computer's memory. You could, indeed, save
numerous pictures in this way.

For example, you could make a picture of a rabbit and a picture of a
rocket, and then put little rabbits all over a large rocket. Or, little rockets
all over a large rabbit.

The screen on which the picture appeared did not necessarily show all the
details; the important thing was that the details were in the computer;
when you magnified a picture sufficiently, they would come into view.

You could magnify and shrink a picture to a spectacular degree. You could
fill a rocket picture with rabbit pictures, then shrink that until all that was
visible was a tiny rocket; then you could make copies of that, and dot them
all over a large copy of the rabbit picture. So that when you expanded the
big rabbit till only a small part showed (so it would be the size of a house,
if the screen were large enough), then the foot-long rockets on the screen
would each have rabbits the size of a dime.

Finally, if you changed the master picture -- say, by putting a third ear on
the big rabbit -- all the copies would change correspondingly.

Thus Sketchpad let you try things out before deciding. Instead of making
you position a line in one specific way, it was set up to allow you to a
number of different positions and arrangements, with the ease of moving
cut-outs around on a table.

It allowed room for human vagueness and judgment. Instead of forcing the

http://www.kzoo.edu/%7Eabrady/CS400/bioW96/soulier.html
http://www.rheingold.com/texts/tft/1.html4
http://www.rheingold.com/texts/tft/1.html4

user to divide things into sharp categories, or requiring the data to be
precise from the beginning -- all those stiff restrictions people say "the
computer requires" -- it let you slide things around to your heart's content.
You could rearrange till you got what you wanted, no matter for what
reason you wanted it.

There had been lightpens and graphical computer screens before, used in
the military, but Sketchpad was historic in its simplicity -- a simplicity, it
must be added, that had been deliberately crafted by a cunning intellect --
and its lack of involvement with any particular field. Indeed, it lacked any

complications normally tangled with what people actually do. It was, in
short, an innocent program, showing how easy human
work could be if a computer were set up to be really
helpful.

As described here, this may not seem very useful, and that has been part
of the problem. Sketchpad was a very imaginative, novel program, in which
Sutherland invented a lot of new techniques; and it takes imaginative
people to see its meaning.

Admittedly the rabbits and rockets are a frivolous example, suited only to a
science-fiction convention at Easter. But many other applications are
obvious: this would do so much for blueprints, or electronic diagrams, or
other areas where large and precise drafting is needed. Not that drawings
of rabbits, or even drawings of transistors, mean the millennium; but that a
new way of working and seeing was possible.

The techniques of the computer screen are general and applicable to
everything -- but only if you can adapt your mind to thinking in terms of
computer screens.

Sutherland was Twenty-six when he succeeded Licklider as director of
ARPA's Information Processing Techniques Office. Then he was
succeeded by Bob Taylor when he left for Harvard in the mid-1960s, to
work on 3-D head-mounted displays (like miniature televisions in
eyeglass frames) and other exotic graphics systems. When David Evans
tried to lure him to Utah, Sutherland said he would do it if Evans
agreed to become a business partner -- and thus the pioneering
computerized flight simulation and image generation company of Evans
& Sutherland was born.

Kay showed up at Utah in November of 1966. His first task was to read
a pile of manuscript Evans gave him -- Ivan Sutherland's thesis. The
way Evans ran the graduate program, you weren't supposed to be
around campus very long or very much. You were supposed to be a
professional and move on to high-level consulting jobs in industry. The
job he found for Alan Kay was with a hardware genius named Ed
Cheadle. Ed had an idea about doing a tabletop computer. Kay worked
on FLEX -- his first personal computer software design -- from 1967 to
1969. While some of the founders of today's personal computer
industry were still in high school, Kay was learning how to design
personal computers.

Technically, Cheadle and Kay were not the first to attempt to build a
personal computer. Wes Clark, from Whirlwind and Lincoln Lab's TX-2
and "imps," had constructed a desk-size machine a few years before,
known as "LINC." FLEX was an attempt to use the more advanced
electronic components that had recently become available to bring
more of the computer's power out where the individual user could

http://www.es.com/
http://www.es.com/

interact with it. FLEX was a significant innovation technically, but it was
complicated and delicate, and in Kay's words, "users found it repellent
to learn." The problem wasn't in the machinery as much as it
was in the special language the user had to master in order to
command the power of the machine to accomplish useful tasks.
That was when Kay first vowed to make sure his personal computer
would come at least part of the way toward the person who was to use
it, and when he realized that software design would be the area in
which this desire could be fulfilled.

Although he didn't fully realize it yet, Alan Kay was beginning to
think about designing a new programming language. The kind
of language he began to yearn for would be a tool for using the
computer as a kind of universal simulator. The problem was that
programming languages were demonically esoteric. "There are two
ways to think about building an instrument," Kay asserts. "You
can build something like a violin that only a few talented artists
can play. Or you can make something like a pencil that can be
used quickly and easily for anything from learning the alphabet
to drawing to writing a computer program." He was convinced that
99 percent of the problem to be solved in making a truly usable
personal computer program were software problems: "By 1966,
everyone knew where the silicon was going."

Besides FLEX, Kay's other project at Utah was to make some software
work. He got a pile of tape canisters on his desk, along with a note that
the tapes were supposed to contain a scientific programming language
known as Algol 60, but they didn't work. It was a maddening software
puzzle that was still far from solved when Kay figured out that it wasn't
Algol 60 but a language from Norway, of all places, called Simula. In a
1984 interview, Kay described what happened when he finally printed
out on paper the program listings stored in those mysterious canisters
and figured out what was on those tapes:

We couldn't understand any of the papers, they were sort of transliterated
from the Norwegian. . . . We spread out the program listings and actually
went through the machine code to try to figure out what was happening --
and I suddenly realized that Simula was a programming language to do
what Sketchpad did. I had never really understood what Sketchpad was. I
get shivers now thinking of it. It rotated my point of view through a
different dimension and nothing has been the same since. I suddenly
understood the purpose of higher level languages.

Alan was one of the enthralled audience at Engelbart's 1968 media
show. He was excited by it because it demonstrated what you could
really do with a computer augmented representation system. It also
made it clear to Alan what he didn't want to do. "The Engelbart crew
were all ace pilots of their NLS system," Kay remembers. They had
almost instant response -- like a very good video game. You could pilot
your way through immense fields of information. It was, unfortunately
for my purposes, something elegant and elaborate that these experts
had learned how to play. It was too complex for my tastes, and I
wasn't interested in the whole notion of literacy as a kind of fluency.

Logo
In the course of preparing his Ph.D. thesis, Alan began to explore the
world of artificial intelligence research, which brought him into closer
contact with two more computer scientists who were to heavily
influence his own research -- Marvin Minsky and Seymour Papert, who
were then codirectors of MIT's pioneering artificial intelligence research
project. In the late 1960s, Papert in particular was doing something
that irrevocable influenced Alan's goals. Papert was creating a new
computer language. For children.

Papert, a mathematician and one of the early heroes of the myth-
shrouded Project Mac, had spent five years in Switzerland, working
with the developmental psychologist Jean Piaget. Piaget had triggered
his own revolution in learning theory by spending time -- years and
decades -- watching children learn. He concluded that learning is not
simply something adults impose upon their offspring through teachers
and classrooms, but is a deep part of the way children are innately
equipped to react to the world, and that children construct their notions
of how the world works, from the material available to them, in definite
stages.

Piaget was especially interested in how different kinds of knowledge are
acquired by children, and concluded that children are scientists -- they
perform experiments, formulate theories, and test their theories with
more experiments. To the rest of us, this process is known as
"playing," but to children it is a vital form of research.

Papert recognized that the responsiveness and representational
capacity of computers might allow children to conduct their
research on a scale never possible in a sandbox or on a
blackboard. LOGO, the computer language developed by Papert, his
colleague Wallace Fuerzing, and others at MIT and at the consulting
firm of Bolt, Bernack & Newman, was created for a purpose that was
shockingly different from the purposes that had motivated the creation
of previous computer languages. FORTRAN made it easier for scientists
to program computers. COBOL made it easier for accountants to
program computers. LISP, some might say, made it easier for
computers to program computers. LOGO, however, was an effort to
make it easier for children to program computers.

Although its creators knew that the LOGO experiment could have
profound implications in artificial intelligence and computer science as
well as in education, the project was primarily intended to create a tool
for teaching thinking and problem-solving skills to children. The
intention was to empower rather than to suppress children's natural
desire to solve problems in ways they find fun and rewarding. "The
object is not for the computer to program the student, but for
the student to program the computer," was the way the LOGO
group put it.

Beginning in 1968, children between the ages of eight and twelve were

http://brainop.media.mit.edu/people/minsky.html
http://www.multimedia.hosting.ibm.com/mmtoday/magazine/papert-1.html
http://el.www.media.mit.edu/groups/logo-foundation/

introduced to programming through the use of attractive graphics and
a new approach that put the power to learn in the hands of the people
who were doing the learning. By learning how to use LOGO to have fun
with computers, students were automatically practicing skills that would
generalize to other parts of their lives.

Papert had observed from both his computer science and
developmental psychology experience that certain of these skills are
"powerful ideas" that can be used at any age, in any subject area,
because they have to do with knowing how to learn . This is the key
element that separated LOGO from the "computer assisted instruction"
projects that had preceded it. Instead of treating education as a task of
transferring knowledge from the teacher to the student, the LOGO
approach was to help students strengthen their ability to discover
knowledge on their own.

One of the most important of these skills, for example, is the idea of
"bugs" -- the word that programmers use to describe the small
mistakes that inevitably crop up in computer programs, and which
must be tracked down before the program will work. Instead of
launching students on an ego-bruising search for the "right"
answer, the task of learning LOGO was meant to encourage
children to solve problems by daring to try new procedures,
then debugging the procedures until they work.

The first revolutionary learning instrument introduced in LOGO was the
"turtle," a device that is part machine and part metaphor. The original
LOGO turtle was a small robot, controlled by the computer and
programmed by the child, that could be instructed to move around,
pulling a pen as it moved, drawing intriguing patterns on paper in the
process. Alan Kay was one of several software designers who realized
that this process was more than just practice at drawing pictures, for
the ability to manipulate symbols -- whether the symbols are turtle
drawings, words, or mathematical equations -- is central to every
medium used to augment human thinking.

The abstract turtle of today's more advanced display technology is a
triangular graphic figure that leaves a video trail behind it on a display
screen. Whether it is made of metal and draws on paper, or made of
electrons and draws on a video screen, the turtle is what educational
psychologists call a transitional object -- and what Papert calls an
"object-to-think-with."

Instead of "programming the computer" to draw a pattern, children are
encouraged to "teach the turtle" how to draw it. They start by
"pretending to be the turtle" and trying to guess what the turtle would
do in order to trace a square, a triangle, a circle, or a spiral. Then they
give the turtle a series of English-like commands, typed in through a
keyboard, to "teach the turtle a new word."

If the procedure followed by the turtle in response to the typed
commands doesn't achieve the desired graphic effect, the next step is
to systematically track down the "bug" that is preventing success. The
fear of being wrong is replaced in this process by the immediate

feedback of discovering powerful ideas on one's own.

After decades of research, Papert summarized the results of his LOGO
work for a general audience in Mindstorms: Children, computers, and
powerful ideas. In this manifesto of what has grown into an
international movement in both the educational and computing
communities, Papert reiterated something important that is easy to lose
in the complexities of the underlying technology -- that the purpose
of any tool ought to be to help human beings become more
human:

In my vision the computer acts as a transitional object to mediate
relationships that are ultimately between person and person. . . .

I am talking about a revolution in ideas that is no more reducible to
technologies than physics and molecular biology are reducible to the
technological tools used in laboratories or poetry to the printing press. In
my vision, technology has two roles. One is heuristic: The computer
presence has catalyzed the emergence of ideas. The other is instrumental:
The computer will carry ideas into a world larger than the research centers
where they have incubated up to now.

When he came across the LOGO work, during the time he was
meditating about the fact that he had put two years into the
FLEX machine only to find that it wasn't amenable to humans
who tried to use it, Alan Kay recalls that "it was like a light
going on in my head. I knew I would never design another
program that was not set up for children."

One of the first things he understood was that a program or a
programming language that can be learned by children doesn't have to
be a "toy." The toy can also serve as a tool. But that transformation
doesn't happen naturally -- it comes about through a great deal of
work by the person who designs the language. Kay already knew that
the most important tools for creating personal computing were to be
found in the software, but now it dawned on him that the power those
tools would amplify would be the power to learn -- whether the user is
a child, a computer systems designer, or an artificial intelligence
program.

Although he knew he had a monstrous software task ahead of him if he
was to create a means by which even children could use computers as
a simulation tool, his FLEX experience and his exposure to LOGO
convinced Kay that there was far more to it than just building an easy-
to-operate computer and creating a new kind of computer language. It
was something akin to the problem of building a tool that a child
could use to build a sandcastle, but would be equally useful to
architects who wanted to erect skyscrapers. What he had in mind
was an altogether new kind of artifact: If he ended up with something
an eight-year-old could carry in one hand and use to communicate
music, words, pictures, and to consult museums and libraries, would
the device be perceived as a tool or as a toy?

Kay began to understand that what he wanted to create was an

entirely new medium -- a medium that would be fundamentally
different from all the previous static media of history. This was going to
be the first dynamic medium -- a means of representing,
communicating, and animating thoughts, dreams, and fantasies as well
as words, images, and sounds. He recognized the power of Engelbart's
system as a toolkit for knowledge workers like editors and architects,
scientists, stockbrokers, attorneys, designers, engineers, and
legislators. Information experts desperately needed tools like NLS. But
Kay was after a more universal, perhaps more profound power.

One of the concepts that played a big part in Papert's LOGO project,
and thus influenced Alan Kay and others, was derived from the thinking
of John Dewey, whose work encouraged generations of progressive
educators. Dewey developed a theory that Piaget later elaborated --
that the imaginative play often mistakenly judged by adults to be
"aimless" is actually a potent tool for learning about the world.
Kay wanted to link the natural desire to explore fantasies with the
innate ability to learn from experimentation, and he knew that the
computer's power to simulate anything that could be clearly described
was one key to making that connection.

Alan wanted to create a medium that was a fantasy amplifier as
well as an intellectual augmentor. First he had to devise a language
more suited for his purposes than LOGO, a "new kind of programming
system that would attempt to combine simplicity and ease of access
with a qualitative improvement in expert-level adult programming."
With the right kind of programming language, used in conjunction with
the high-powered computer hardware he foresaw for the near future,
Kay thought that an entirely new kind of computer -- a personal
computer -- might be possible.

Such a software advance as the kind Kay envisioned could only be
accomplished by using hardware that didn't exist yet in 1969, since the
computing power required for each individual unit would have to be
several hundred times that of the most sophisticated time-sharing
computers of the 1960s. But at the end of the 1960s, such previously
undreamed-of computing power seemed to be possible, if not
imminent. The year 1969 was pivotal in the evolution of personal
computing, as well as in Alan Kay's career. It was the year that the
ARPAnet time-sharing communities began to discover that they were
all plugged into a new kind of social-informational entity, and
enthusiastically began to use their new medium to design the next
generations of hardware and software.

After he finished his thesis on FLEX, Kay began to pursue his goal of
designing a new computer language in one of the few places that had
had the hardware, the software, and the critical mass of brain power to
support his future plans -- the Stanford Artificial Intelligence
Laboratory. He had a lot to think about. There were many great
programmers, but very few great creators of programming languages.

The programming language for the eventual successor to FLEX was his
primary interest, not only because he knew that the hardware
would be catching up to him, but because he knew that

http://www.cs.stanford.edu/profile/ai.html
http://www.cs.stanford.edu/profile/ai.html

programming languages influence the minds of the people who
use computers. In 1977, after the task of creating his new
programming language, Smalltalk, was accomplished, Kay described
the importance of this connection between a programming language
and the thinking of the person who uses it:

The particular structure of a symbolic language is important because it
provides a context in which some concepts are easier to think about than
others. For example, mathematical notation first arose to abbreviate
concepts that could be expressed only as ungainly circumlocutions in
natural language. Gradually it was realized that the form of an expression
and manipulation could be of a great help in the conception and
manipulation of the meaning for which the expression stood. . . .

The computer created new needs for language by
inverting the traditional process of scientific
investigation. It made new universes available that
could be shaped by theories to produce simulated
phenomena.

The "inverting" of "the traditional process of scientific investigation"
noted by Kay was the source of the computer's power of simulation.
And the ability to simulate ideas in visible form was exactly what a new
programming language needed to include in order to use a computer as
an imagination amplifier. If Piaget was correct and children are both
scientists and epistemologists, a tool for simulating scientific
investigation could have great impact on how much and how fast young
children and adult computer programmers are able to learn.

According to the rules of scientific induction, first set down by Francis
Bacon three hundred years ago, scientific knowledge and the power
granted by that knowledge are created by first observing nature, noting
patterns and relationships that emerge from those direct observations,
then creating a theory to explain the observations. With the creation
of a machine that "obeyed laws you wanted to be held true," it
became possible to specify the laws governing a world that
doesn't exist, then observe the representation created by the
computer on the basis of those laws.

Papert called these simulated universes "microworlds," and used LOGO-
created microworlds to teach logic, geometry, calculus, and problem-
solving to ten-year-olds. Part of the fascination of a good video game
lies in the visual impact of its microworld representation and the
amount of power given to the player to react to it and thus learn how
to control it. In Smalltalk, every object was meant to be a microworld.

Computer scientists talk about computational metaphors in
computer languages -- alternative frameworks for thinking about what
programming really does. The most widespread and oldest
metaphor is that of a recipe, the kind of recipe you create for a very
stupid but obedient servant -- a list of definite, step-by-step
instructions that could provide a desired result when carried out by a
mindless instruction-following mechanism. The sequence of instructions

is an accurate but limiting metaphor for how a computer operates. It is
a reflection of the fact that early computers were built to do just one
thing at a time, but to do it very fast and get on to the next
instruction.

This model, however, is not well suited to computers of the
future, which will perform many processes at the same time (in
the kind of computation that is called parallel processing). Languages
based on the dominant metaphors of numerical, serial procedures are
much better suited for linear processes like arithmetic and less well
suited for exactly those tasks that computers need to perform if they
are to serve as representational media. Parallel processing is also a
better model of the way human brains handle information.

Starting from concepts set forth in LOGO and in Simula, Kay began to
devise a new metaphor in which the string of one-at-a-time
instructions is replaced by a multidimensional environment occupied by
objects that communicate by sending one another messages. In
effect, he started out to build a computer language that would
enable the programmer to look at the host computer not as a
serial instruction follower, but as thousands of independent
computers, each one able to command the power of the whole
machine.

In 1969 and 1970, the growing impact of the Vietnam war and the
pressure by congressional critics of what they interpreted as "frivolous
research" contributed to the death of the "ARPA spirit" that had led to
the creation of time-sharing and computer networks. The "Mansfield
Amendment" in 1970 required ARPA to fund only projects with
immediately obvious defense applications. Taylor was gone. The AI
laboratories and the computer systems designers found funding from
other agencies, but the central community that had grown up in the
sixties began to fragment.

The momentum of the interactive approach to computing had built up
such intensity in its small following by the late 1960s that everybody
knew this fragmentation could only be a temporary situation. But
nobody was sure where, or how, the regrouping would take place.
Around 1971, Alan began to notice that the very best minds among his
old friends from ARPA projects were showing up at a new institution a
little more than a mile away from his office at the Stanford AI
laboratory.

By the beginning of 1971, Alan Kay was a Xerox consultant, then a
full-time member of the founding team at the Palo Alto Research
Center. By this time, the hardware revolution had achieved another
level of miniaturization, with the advent of integrated circuitry and the
invention of the microprocessor. Xerox had the facilities to design and
produce small quantities of state-of-the-art microelectronic hardware,
which allowed the computer designers unheard-of power to get their
designs up and running quickly. It was precisely the kind of
environment in which a true personal computer might move

http://www.rheingold.com/texts/tft/1.html0
http://www.rheingold.com/texts/tft/1.html0

from dream to design stage. Alan Kay was already thinking
about a special kind of very powerful and portable personal
computer that he later came to call "the Dynabook."

Everybody, from the programmers in the "software factory" who
designed the software operating system and programming tools, to the
hardware engineers of the Alto prototype machines, to the Ethernet
local-area-network team who worked to link the units, was motivated
by the burning desire to get a working personal computer in
their own hands as soon as possible. In 1971, Alan wrote and
thought about something that wasn't yet called a Dynabook but looked
very much like it. Kay's Learning Research Group, including Adele
Goldberg, Dan Ingalls, and others, began to create Smalltalk, the
programming "environment" that would breathe computational life into
the hardware, once the hardware wizards downstairs cooked up a small
network of prototype personal computers.

One of the most important features of the anticipated hardware was
the visual resolution of the display screen. One of the things Alan
had noticed when watching children learn LOGO was that kids
are very demanding computer users, especially in terms of having
a high-resolution, colorful, dynamic display. They were accustomed to
cartoons on television and 70-mm wide-screen movies, not the fuzzy
images then to be found on computer displays. Kay and his colleagues
knew that hardware breakthroughs of the near future would make it
possible to combine the interactive properties of a graphical language
like Sketchpad with very high-resolution images.

The amount of image resolution possible on a video display screen
depends on how many picture elements are represented on the screen.
Kay felt that the threshold number of picture elements needed to most
strongly attract and hold the attention of a large population of
computer users, and give the users significant power to control the
computer, would be around one million dots. (The resolution of a
standard snapshot is the equivalent to about four million dots.) The
Alto computer being constructed for PARC researchers -- which the
Learning Research Group called "an interim Dynabook" -- would have
around half a million dots.

The technique by which the Alto would achieve its high-
resolution screen was called "bit-mapping," a term that meant
that each picture element, each dot of light on the display screen, was
connected to one bit of information in a specific place in the computer's
memory, thus creating a kind of two-way informational map of the
screen. If, for example, a specific bit in the computer's "memory map"
was turned off, there would not be a dot of light at the location on the
screen. Conversely, an "on" bit at a coordinate in the memory map
would produce a dot of light at the designated screen location. By
turning on and off parts of the bit map through software commands,
recognizable graphic images can be created (and changed) on the
screen.

Bit-mapping was a major step toward creating a computer that an

individual could use comfortably, whether the user is an expert
programmer or a beginner. The importance of a visual display that
is connected directly to the computer's memory is related to the
human talent for recognizing very subtle visual patterns in large
fields of information -- undoubtedly a survival trait that evolved
way back when our ancestors climbed trees and prowled
savannas.

Human information processors have a very small short term
memory, however, which means that all computers and no
humans can extract the square roots of thousand-digit numbers
in less than a second, no computers and all humans can
recognize a familiar face in a crowd. By connecting part of the
computer's internal processes to a visible symbolic
representation, bit-mapping puts the most sophisticated part of
the human information processor in closer contact with the
most sophisticated part of the mechanical information
processor.

Bit-mapping created more than a passive window on the computer's
internal processes. Just as the computer could tell the human who used
it certain facts about whatever it had in its memory, the user was also
given the power to change the computer by manipulating the display. If
users change the form of the visual representations on bit-mapped
screens, using keyboard commands, lightpens (á la Sketchpad), or
pointing devices like mice (á la Engelbart), they can also change the
computer's memory. The screen is a representation, but it is also a
control panel -- a drawing on a bit-mapped screen can be nothing
more than a drawing, but it can also be a kind of command, even a
program, to control the computer's operations.

If, for example, you were to use a mouse to move a video pointer on
the screen to touch a visual representation of a file folder or an out
basket, and you could call the folder, for example, from the computer's
memory and display a document from it on your screen simply by
pointing to it, or send the contents of the computer-stored out basket
to somebody else's in basket, then a person would be able to
accomplish the kind of work done in offices, even if that person knew
nothing about computer programming. Which, after all, was the
potential future market that motivated Xerox management to create
PARC and cut their whiz kids loose in the first place.

Creating new kinds of computer input and output devices to
help human pattern recognition mesh with mechanical symbol
manipulation is known as "designing the human interface," an
art and science that had to be created in the 1970s in the kind of
human-computer partnership envisioned by Licklider and Engelbart in
the 1960s, which could start to happen by the 1980s. Alan Kay's
Smalltalk project played a key role in the evolution of the Alto
interface, and as such was integral to the eventual company goals in
the office automation market. But even at the beginning, Kay

started bringing children into the project.

Part of the Smalltalk project's effect on the early days at PARC was
inspirational. It wasn't long before the rest of the team understood
Alan's desire to bring children into the process of designing the same
instrument that he and all the other computer scientists wanted to use
themselves. Another aspect of Kay's contribution was more concrete:
the absolute conviction that they were designing something meant for
people to use. That might not sound too revolutionary today, but even
as late as 1971, most of the top-flight computer scientists who believed
that this tool was going to be more than just a gadget for computer
programmers were at PARC.

PARC in the early 1970s was a collection of the worlds best computer
scientists, hardware engineers, physicists, programmers . . . which
meant that it was also a collection of people with strong personalities
and definite opinions. Bob Taylor, Alan Kay, Butler Lampson, Bob
Metcalfe, and their colleagues each had his own unique
approach to creating personal computing, but they agreed on
one fundamental assumption -- that their ultimate product
should be as generally useful as a hammer, or pulley, or book.
Secretaries and business executives would one day be able to use the
same tool to help them perform the work. Architects and designers
would have the power of modeling, forecasting, and simulation at their
fingertips. A true personal computer, the diverse PARC groups
agreed, ought to be usable by legislators and librarians,
teachers and children. And a computer that could be
commanded by looking at images on a screen and pointing to
them by means of a mouse was certainly a lot more widely
usable than a computer that required arcane keyboard-entered
commands in order to function.

The first Alto personal computer prototypes were distributed to PARC
researchers in 1974. As they had predicted, the creation of an
environment in which every researcher had, for the first time in history,
personal access to a powerful computer, and the means to
communicate with all of his or her colleagues' computers, had a
profound effect on their ability to do their job of designing even more
powerful computer systems.

By the late 1970s, yet another generation of even more advanced
hardware and software had been created by a network of nearly a
thousand researchers at PARC equipped with Altos, communicating via
Ethernet networks. But the outside world, and many people in the
computer world, were still unaware of the potential of personal
computers. The problem, as PARC alumnus Charles Simonyi was to
point out in 1983, an eventful decade later, was that Xerox
management couldn't be faulted for not realizing in 1973 that PARC
was more than ten years ahead of an industry that wouldn't even exist
until 1975.

Another small cloud on the horizon in the mid-1970s -- the "home-

brew" computer hobbyists who were building their own low-power
microcomputers -- became a gathering storm of popular interest in
personal computing by the end of the 1970s. The microcomputer
hobbyists, who assembled the new microprocessor chips into
operational computers, were for the most part unaware of the far more
powerful devices that were in use in Palo Alto years before a tiny
company in New Mexico, the now-legendary MITS, produced the first
affordable, do-it-yourself computer -- the Altair.

In March, 1977, Alan Kay and Adele Goldberg condensed a PARC
technical report into an article, the title of which described both the
dream and the reality of the Smalltalk branch of the PARC project:
"Personal Dynamic Media" was published in a magazine named
Computer, during a time when computer magazines were for
specialists. Like Bush, Licklider, Taylor and Engelbart before them, Kay
and Goldberg did not talk of circuits or programs, but of media,
knowledge, and creative human thought:

For most of recorded history, the interactions of humans with their media
have been primarily nonconversational in the sense that marks on paper,
paint on walls, even "motion" pictures and television do not change in
response to the viewer's wished. A mathematical formulation -- which may
symbolize the essence of an entire universe -- once put down on paper,
remains static and requires the reader to expand on its possibilities.

Every message is, in one sense or another, a simulation of some idea. It
may be representational or abstract. The essence of a medium is very much
dependent on the way messages are embedded, changed, and viewed.
Although digital computers were originally designed to do arithmetic
computation, the ability to simulate the details of any descriptive model
means that the computer, viewed as a medium in itself, can be all other
media if the embedding and viewing methods are sufficiently well provided.
Moreover, this new "metamedium" is active -- it can respond to queries and
experiments -- so that the messages may involve the learner in a two-way
conversation. This property has never been available before except through
the medium of an individual teacher. We think the implications are vast
and compelling.

A dynamic medium for creative thought: the Dynabook. Imagine having
your own self-contained knowledge navigator in a portable package the size
and shape of an ordinary notebook. Suppose it had enough power to
outrace your senses of sight and hearing, enough capacity to store for later
retrieval thousands of page-equivalents of reference materials, poems,
letters, recipes, records, drawings, animations, musical scores, waveforms,
dynamic simulations, and anything else you would like to remember and
change.

The Learning Research Group introduced students from the nearby
Jordan Middle School in Palo Alto to what they called "interim
Dynabooks." Nearly a decade before keyboards and display
screens became familiar appliances, these children were
introduced to a device no child and only a few computer
scientists had seen before -- an Alto computer set up to run
Smalltalk. By using the mouse and the graphics capabilities provided
by the hardware and software, these students were able use Smalltalk
to command the computer in much the same way that Papert's
students in Cambridge, years before, had learned to program in LOGO
by "teaching the turtle new words."

http://crl.ucsd.edu/%7Egoldberg/

The screen was either a "very crisp high-resolution black-and-white
CRT or a lower resolution high quality color display." High-fidelity
speakers and sound synthesizers, five-key keyboards like Engelbart's,
and piano-like keyboards were also available. The system could store
the equivalent of 1500 pages of text and graphics, and the processor
was capable of creating, editing, storing, and retrieving documents that
consisted of words, graphic images, sounds, numbers, or combinations
of all four symbol forms.

The mouse could be used to draw as well as to point, and an "iconic
editor" (another Smalltalk innovation) used symbols that children
who were too young to read could use to edit graphics; e.g.,
instead of typing in a command to invoke a graphics cursor, a child
could point to a paintbrush icon.

The interim Dynabook could be used to read or write an old-fashioned
book, complete with illustrations, but it could also do much more: "It
need not be treated as a simulated paper book since this is a new
medium with new properties. A dynamic search may be made for a
particular context. The non-sequential nature of the file medium and
the use of dynamic manipulation allows a story to have many
accessible points of view; Durrell's Alexandria Quartet, for instance,
could be one book in which the reader may pursue many paths through
the narrative," wrote Kay and Goldberg.

The dynamic nature of the medium was made clear to the users as
they became acquainted with the toolkit for drawing, editing, viewing,
and communicating. Smalltalk was not just a language, and the Alto
system was not just a one-person computer. Together, the
hardware, the software, and the tools for the users to learn the
software, constituted an environment -- a small symbolic
spaceship that the first-time user learned to control and steer through
a personal universe.

The ability of the users to personalize their representation and use of
information became clear as the children from Jordan Middle School
experimented with changing typefonts for displaying letterforms, and
with changing the bit-maps of the computer to create and animate
cartoon images in mosaics, lines, and halftones. The users not only had
the capability to create and edit in a new way, but once they learned
how to use the medium they gained the ability to make their own
choices about how to view the universe of information at their
fingertips.

The editing capabilities of the Dynabook made it possible to display and
change every object in the Smalltalk microworld. Text and graphics
could be manipulated by pointing at icons and lists of choices --
"menus" in software jargon -- and multiple "windows" on the display
screen made it possible to view a document or group of documents in
several different ways at the same time. The filing capabilities made it
possible to store and retrieve dynamic documents that could consist of
any collection of objects that could be displayed and have something to
do with each other. Drawing tools and painting programs made it
possible to input information freehand as well as through the keyboard.

The structure of the Smalltalk language, the tools used by the first-
time user to learn how to get around in the Dynabook, and the visual
or auditory displays were deliberately designed to be mutable and
movable in the same way: "Animation, music, and programming,"
wrote Kay and Goldberg, "can be thought of as different sensory views
of dynamic processes. The structural similarities among them are
apparent in Smalltalk, which provides a common framework for
expressing those ideas." A "musical score capture system" called OPUS
and a graphic animation tool called SHAZAM were part of the
Smalltalk-Dynabook toolkit.

In 1977, Scientific American's annual theme edition was dedicated to
the subject of "Microelectronics." Alan Kay's contribution to the issue,
"Microlectronics and the Personal Computer," was the only article that
directly talked about the meaning of this new technology for people.
The magazine's editors summed up the piece in a two-sentence
subtitle: "Rates of progress in microlectronics suggest that in about a
decade many people will possess a notebook-sized computer with the
capacity of a large computer of today. What might such a system do
for them?"

One of the first things Kay pointed out was the connection between the
use of interactive graphic tools and the exercise of a new cognitive skill
-- a skill at selecting new ways to view the world. The metamedium
which Kay still saw to be a decade in the future would only achieve its
full power when people use it enough to see what it is about. The
power that the 1977 prototypes granted to the human who used
such devices was the power to create many new points of view.

This freedom to change one's view of a microworld, Kay believed, was
one of the most important powers of the new kinds of representational
tools that were being designed and tested in the late 1970s. In
describing the way children learned to use the Smalltalk system, Kay
also described something of the nature of the experience:

Initially the children interact with our computer by "painting" pictures and
drawing straight lines on the display screen with the pencillike pointer. The
children then discover that programs can create structures more complex
than any they can create by hand. They learn that a picture has several
representations, of which only the most obvious -- the image -- appears on
the screen. The most important representation is the symbolic model of the
picture stored in the memory of the computer. . . .

One of the best ways to teach nonexperts to communicate with computers
is to have them explore the levels of abstraction at which images can be
manipulated.

Kay noted that when he gave the same tool that the children used as
both an amusement and an entrance into Smalltalk programming to an
adult artist, the artist started out creating various designs similar to
those he was accustomed to making on paper. Eventually the artist
discovered that the properties of the new medium, and his increasing
facility for commanding those properties, made it possible for him to
explore graphic universes that he could never have created with his old
media: "From the use of the computer for the impoverished simulation
of an already existing medium," Kay wrote, "he had progressed to the

discovery of the computer's unique properties for human expression."

This freedom of viewpoint was only meant to be explored and
demonstrated in a preliminary way in Smalltalk: It was Kay's hope that
many new metaphors and languages would evolve as time went on,
into what he called "observer languages":

In an observer language, activities are replaced by "viewpoints" that
become attached to one another to form concepts. For example, a dog can
be viewed abstractly (as an animal), analytically (as being composed of
organs, cells, and molecules), pragmatically (as a vehicle by a child),
allegorically (as a human being in a fairy tale) and contextually (as a
bone's way to fertilize a lawn). Observer languages are just now being
formulated. They and their successors will be the communication vehicles
of the 1980s.

Kay set forth his theories about personal computers as the
components of a new medium for human expression , and
compares the recent and future emergence of personal computers with
the slower development cycles of past media. He also predicted that
the changes in the human social order that were likely to
accompany a new computerized literacy would be much more
sweeping than the effects of previous media revolutions. The
creation of a literate population would be the first reason for such a
change. Out of that literate population, perhaps a few creative
individuals would show the rest of us what could be achieved. He
declined to predict the specific shape of these social changes, noting
the failure of previous attempts at such forecasting:

We may expect that the changes resulting from computer literacy will be as
far reaching as those that came from literacy in reading and writing, but for
most people the changes will be subtle and not necessarily in the direction
of their idealized expectations. For example, we should not predict or
expect that the personal computer will foster a new revolution in education
just because it could. Every new communication medium in this century --
the telephone, the motion picture, radio and television -- has elicited
similar predictions that did not come to pass. Millions of uneducated people
in the world have ready access to the accumulated culture of the centuries

in public libraries, but they do not avail themselves of it. Once an
individual or a society decides that education is
essential, however, the book, and now the personal
computer, can become among the society's main
vehicles for the transmission of knowledge.

The difference between a Dynabook of the future and all the libraries of
the past, however, would depend upon the dynamic nature of this
medium. A library is a passive repository of cultural treasures. You
have to go in and dig out your own meanings. A Dynabook would
combine the addictive allure of a good video game with the
cultural resources of a library and a museum, with the
expressive power of an animated fingerpaint set and a
synthesized orchestra. Most importantly, it would actively find the
knowledge appropriate for the task of the moment, communicated in
the form and language best suited to each individual who used it.

The intelligence of such devices -- the reason that software
breakthroughs in artificial intelligence research would someday have to
intersect with the evolution of personal computers -- would influence
their ability to bring resources to the person who needs them. When
the machines grow smart enough to communicate with eight-
year-olds, then the question will shift from how to build a
computer that people can easily use to what we all do with that
kind of power.

What if libraries were able to find out what most interests you
and what you most need to know, and showed you how to find
what you wanted? What if you could say to the library: "I wonder
what it would be like to live in the Baghdad of the Caliphate?" or "I
wonder how it feels to be a whale?" and expect the library to show
you? Do you like Van Gogh? How about a simulation of the fields
outside his house? Would you care to sit in with Louis Armstrong or
Wolfgang Mozart? What would it do to the world if we could all see how
everybody else lived and share in their cultures?

If the first effect of the coming metamedium was likely to be the
creation of a literate population who shared a new freedom to use
symbols and to choose how to view information, then the second effect
lay in the power that would be unique to this medium -- the power of
simulation. Simulation is the power to see what you imagine, to
create worlds that obey your command. The computer can build instant
sensory representations. The user/programmer explores a universe that
reacts, in which the degree of the user's power depends upon and
grows with one's understanding of the way the worlds work.

The power of simulation to empower the imagination and give form to
whatever can be clearly discerned in the mind's eye is what makes this
kind of device a "fantasy amplifier." Although there are several homilies
that are entitled to be called "Kay's First Law," the statement that he
most often calls "Kay's Second Law" is: "Any time you build a
fantasy amplifier, you have a winner." His reasoning is that
game playing and fantasizing are metaphors for the kind of skill
people need to get around in the world.

"We live in a hallucination of our own devising," Kay is fond of saying.
But our illusion is so complex, so much of the world we experience
appears to be beyond our control, and the operating manual is so
difficult to find, that we all tend to get locked into the way our families,
societies, and cultures see the world. "We can't exist without fantasy,
Kay asserts, "because it is part of being a human. A fantasy is a
simpler, more controllable world."

And by practicing how we would control a simpler version of the world,
we often figure out how to operate the world outside the fantasy. A
game is both controllable and challenging. It is entered vicariously,
purposefully, and with an open mind about the outcome. Sports and
science and art all involve vicarious, purposeful fantasies in that sense.
That's why he feels that video games were not a fad but a precursor to

something with much more profound power. And that is the most likely
reason why he joined Atari Corporation.

The power of simulation is not necessarily or exclusively a beneficial
one, as the legends of today's system-crashers, obsesses
programmers, and dark-side hackers attest, and as Kay warned in his
Scientific American paper:

The social impact of simulation -- the central part of any computing -- must

also be considered. First, as with language, the computer user has
a strong motivation to emphasize the similarity
between simulation and experience and to ignore the
great differences that symbols interpose between
models and the real world. Feelings of power and a narcissistic
fascination with the image reflected back from the machine are common.
Additional tendencies are to employ the computer trivially (simulating what
paper, paints, and a file cabinet can do), as a crutch (using the computer
to remember things that we can perfectly well remember ourselves) or as

an excuse (blaming the computer for human failings). More serious is
the human propensity to place faith in and assign
higher powers to an agency that is not completely
understood. The fact that many organizations actually
base their decisions on -- worse, take their decisions
from -- computer models is profoundly disturbing given
the current state of computer art

The fact of simulation is so seductive to human perception, and so
potentially useful in "real world" applications, that its widespread use is
inevitable, once personal computers grow sophisticated and inexpensive
enough. The ethics of how and for what purposes simulations should
and should not be used are only beginning to be formulated. The
historical events, debates in PTAs and legislatures, and growth in public
concern that will accompany the introduction of this medium will help
determine the shape of the future ethics of simulation. The best place
to look for expert guidance, Kay suggests, might be to those of us who
are the least prejudiced by precomputer ways of thinking:

Children's Computer Ethic
Children who have not yet lost much of their sense of
wonder and fun have helped us to find an ethic about
computing: Do not automate the work you are engaged in, only the
materials. If you like to draw, do not automate drawing; rather, program
your personal computer to give you a new set of paints. If you like to play
music, do not build a "player piano"; instead program yourself a new kind
of instrument.

The way we think about computers -- as machines, as systems that
mimic human capabilities, as tools, as toys, as competitors, or as
partners -- will play a large part in determining their future role in
society. In the conclusion of his article, Kay cautions against the
presumptions of present-day minds about what the minds of future

generations may or may not choose to do with the instruments past
generations worked to create:

A popular misconception about computers is that they are logical.
Forthright is a better term. Since computers can contain arbitrary
descriptions, any conceivable collection of rules, consistent or not, can be
carried out. Moreover, computers' use of symbols, like the use of symbols
in language and mathematics, is sufficiently disconnected from the real
world to enable them to create splendid nonsense. Although the hardware
of the computer is subject to natural laws (electrons can move through
circuits only in certain physically defined ways), the range of simulations
the computer can perform is bounded only by the limits of human
imagination. In a computer, spacecraft can be made to travel faster than
the speed of light, to time travel in reverse.

It may seem almost sinful to discuss the simulation of nonsense, but only if
we want to believe that what we know is correct and complete. History has

not been kind to those who subscribe to this view. It is just this
realm of apparent nonsense that must be kept open for
the developing minds of the future. Although the
personal computer can be guided in any direction we
choose, the real sin would be to make it act like a
machine!

Because he started out young in a field that was young itself, Kay was
one of the first of the generation of infonauts, the ones who grew up
with the tools created by the pioneers, and who have been using them
to create a medium for the rest of us. One of the things he learned at
ARPA and Utah, Sail and PARC, Atari and Apple, was that putting
together a group of talents and leaving them alone might be the most
important ingredient in invoking the breakthroughs he'll need to
complete his dream.

People are beginning to wonder what Kay, now at Apple, intends to do
next. "I would imagine that he feels more than a little frustrated," said
Bob Taylor, in 1984, referring to the fact that Alan Kay hadn't produced
anything as tangible as Smalltalk in a number of years. A hotshot
programmer at Apple put it differently: "He deserves to be called a
visionary, because he is. And I love to hang around him because he
knows so much about so many things. But it gets a little tiring the
third time you hear him say, 'We already did that back in '74.' "

Atari was the first institution where Alan Kay played a significant role
but didn't make any breakthroughs. Because of what happened -- or
didn't happen -- with the Atari team, he probably learned that being a
member of a team, albeit an inspirational, even visionary member,
doesn't necessarily mean that he is cut out to be a good leader. Before
we explore the end of the dream at Atari, however, another infonaut by
the name of Brenda will give us a glimpse at part of what Kay and his
cohorts attempted to accomplish.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Twelve:
Brenda and the Future
Squad

http://www.rheingold.com/texts/tft/index.html

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Twelve:
Brenda and the Future Squad
To those of us who don't live and work in futurist sanctums like ARC,
PARC, Atari, or Apple, such activities as flying through information space
or having first-person interactions with a computer are hard to imagine
in terms of what one would like to do on a Friday night. There simply
aren't any analogous images available in our cultural metaphor-bank: Is
it like watching television? Playing a video game? Searching through an
infinite encyclopedia? Acting in a play? Browsing through a book? Fooling
with fingerpaints? Flying a plane? Swimming?

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

My initial encounter with Alan Kay led me to several of the people who
worked for him at the time, and I eventually ended up spending more
time with Brenda Laurel and Colleagues than I did with Alan. Brenda
and her friends were interested in the same questions that
puzzled me: what would it feel like to operate tomorrow's mind-
augmenting information-vehicles? My first experience with their
work took place in a guarded, well-equipped room in Sunnyvale,
California, home of Atari Systems Research Group. The following brief
scenario is taken from my notes of that first observation:

The world was grey and silent before Brenda spoke.
"Give me an April morning on a Meadow," she said, and the gray was
replaced by morning sunshine. Patches of cerulean sky were visible
between the redwood branches. Birds chirped. Brooks babbled.
"Uhhmm . . . scratch the redwood forest," Brenda continued: "Put the
meadow atop a cliff overlooking a small emerald bay. Greener.
Whitecaps."
Brenda was reclining in the middle of the media room. "The
background sounds nice," she added: "Where did you get it?"
"The birds are indigenous to the northern California coast," replied a
well-modulated but disembodied female voice: "The babbling brook is
from the acoustic library. It's digitally identical to a rill in Scotland."
"There's a wooded island in the bay," continued Brenda, looking down
upon the island that instantly appeared below her where only green
water had been a moment before. She surveyed the new island from
her meadow atop the cliff above the bay, then spoke again: "Monterey
pine, a small hill, a white beach. Zoom into the beach. Let's walk up
that path. There's a well under that banyan tree. I want to dive in and
emerge bone-dry in the Library of Alexandria, the day before it
burned."

A few groups on the leading edge of cognitive technology have been
trying to find images to help them in their effort to materialize a mass-
marketable version of Bush's Memex, Engelbart's Augmentation
Workshop, and Kay's Dynabook. Those people who are attempting to
design these devices share an assumption that such machines will
evolve from today's computer technology into something that will
probably not resemble the computers we see today. Ideally, we won't
see these hypothetical computers of tomorrow, because they
will be invisible, built into the environment itself.

Try to imagine a computer that is nowhere to be seen, and is
set up to attend to your every wish, informationally speaking.
You enter a room (or put a helmet over your head), and the
room (or the helmet) provides multisensory representations of
anything, real or imaginary, you can think of to ask it to
represent. Science fiction writers of the past decades have done their
share of speculating on what one might do in such a representationally
capable environment. You could, for example, go skiing in the Alps
with wraparound full-color three-dimensional visual display, authentic
panphonic soundtrack, biting cold air, ultraviolet-rich high-altitude

sunshine, spray of powder snow on your cheeks, the feeling of skis
beneath your feet, of being impelled down a slope.

But you shouldn't have to limit your use of such a universal
information medium to a real terrestrial experience. You could
explore a black hole in a neighboring galaxy, navigate through
tour nervous system, become a Connecticut Yankee in King
Arthur's court. If you want to extend your senses into the real world
in real time, you can look at quasars with x-ray radiotelescope vision,
CAT scan everything you see, hover above the earth in a weather
satellite, zoom down to take an electron microscopic look at the
microbes on a dust mote on a license plate in Kenya.

If you want to communicate with one person or an entire on-line
network, you have all the media at your disposal, along with additional
"dialogue support tools" to augment the interaction. Or the interaction
might be private, limited to you and the informationscape -- for
reasons of work or play.

Perhaps you want to know something about blue whales.
Everything written in every magazine, library, or research data
base is available to you, and an invisible librarian is there you
help you, if you wish; just focus your eyes on a reference file
and it fills the screen. Ask the librarian questions about what
you want to know, or allow it to ask you questions. But you
don't have to just read about whales. You can listen to them,
watch them, visit them. Just ask, and you'll be underwater,
swimming among them, or in a helicopter, watching them while
you hover above the crystalline Baja waters.

The experience won't be strictly passive. You can act out the
role of a whale or Louis XIV (or Genghis Khan, if that is your
taste) in a simulated video encounter and make decisions about the
outcome of that encounter. Paint palettes, text editors, music and
sound synthesizers, automatic programming programs, and animation
tools will give you the power to create your own blue whale or ancient
Mongolian microworlds and romp around in them.

Since MIT, Lucasfilm, and Evans & Sutherland were in the bidding for
Kay's services when he left Xerox, one can safely assume that Atari
must have offered him something more. Although his obvious desire
was to run an advanced software shop, Kay knew that his next
software dream would require very advanced hardware. "You want
hardware designers? We'll get you hardware designers," you can
imagine them saying. Atari got him nothing but the best -- including
Ted Hoff, the legendary Intel scientist who was the leader of the team
that invented the microprocessor chip. Kay assembled his own software
research team.

Brenda Laurel joined Atari Systems Research Group after a stint in
their educational marketing division. When I first met her, she was

involved in a research project that she insisted defied verbal
description. She invited me to watch a special kind of brainstorming
session they were just beginning to explore.

The Atari research building was in a typical Sunnyvale flatland
industrial park, with the usual high-tech high-security trappings --
twenty-four-hour guards, laminated color-coded nametags, uniformed
escorts. It was here that I joined Brenda and several of her colleagues
in a group-imagination exercise connected with what they called a
media-room project.

Brenda signed me in, walked me through the gray-walled, gray-
carpeted corridors, and brought me to a large room, bare except for a
few industrial-modern couches and chairs, a videotape setup, and two
whiteboards. Inside the room were Eric Hulteen, the project leader;
Susan, a red-haired, soft-spoken young woman; Scott, a quiet,
spaced-out preppie type; Don and Ron Dixon, the Robotic experts;
Craig, a somewhat skeptical, bearded hacker; Jeff, Tom, Brenda, and
Rachel, who was videotaping the event.

Rachel was short, had a crewcut, wore a tank-top tee shirt, purple
blousy harem pants, and no shoes. Don and Ron were twins. A few in
the group could be as young as twenty-three or twenty-four, the oldest
was no older than thirty-five. Jeans and sandals were the dominant
costume. Nobody wore a tie. Nobody had acne or a speech
impediment. Nobody wore a plastic penholder.

As it was explained to me by Brenda and by Eric, whose project it was,
a media room is an information terminal that a person can walk
around inside -- a place where you can communicate directly
with the machine without explicit input devices like keyboards.
The room itself is set up to monitor human communication output. This
presumes that all the hardware and software that are now in
experimental or developmental stages will be working together to do
what a good media room does -- without bothering the person who
uses it with details of its operations.

Eric came to Atari from MIT's Architecture Machine Group, an
innovative group led by Alan Kay's old friend and Atari consultant Nick
Negroponte. The idea of "spatial data management" that came from
the MIT group was a response to the problem of finding a way to
navigate the huge new informational realms opened by computers, by
adopting the metaphor of information space that the user can more or
less "fly" through. The dominant metaphor in software design
viewed large collections of information through the well-known
"file-cabinet" metaphor, in which each piece of information is
regarded as part of a "file folder" that the user locates through
traditional filing methods. But what if the collection of
information could be displayed visually and arranged spatially,
so the user could have the illusion of "navigating" through it?

Perhaps the most well-known demonstration of this metaphor was the

http://nicholas.www.media.mit.edu/people/nicholas/
http://nicholas.www.media.mit.edu/people/nicholas/

"Aspen Map" created by Negroponte's group. To use this map, you sit
in front of a video screen and touch the screen to steer your way down
a photographic representation of the streets and houses of Aspen,
Colorado.

A computer-directed videodisk connects the video steering controls to a
very large collection of photographs of Aspen. The computer translates
your position and your commands into the correct sequence of
photographs. If you decide to look to the left, the screen shows the
streets and houses that are located to the left of this position in the
real city. If you decide to stop and take a closer look at one of the
houses that are specially marked, or even open the door and look
inside, you can do so.

The kind of simple branching structure of a city's streets represents
only the most basic kind of information base that can be represented
spatially. The most important aspect of this idea doesn't have to do
with road maps -- although this is obviously a good way to learn how
to get around in a town you've never seen before. The important point
is that some information domains can be organized around a spatial
metaphor, creating a coherent environment path that each user can
move around in by following his own particular path. A reference work
for someone trying to find the problem in an automobile engine or the
plumbing system of a nuclear submarine could just as easily be
mapped in such a way.

Whether they came from MIT, Carnagie-Mellon, or another video game
manufacturer, every person in Kay's Atari group represented the cream
of the crop of the best young minds in fields ranging from robotics to
holography to videodisk technology to artificial intelligence to cognitive
psychology to software design. The necessary hardware components of
the media room will become available, everyone hopes, by the time the
really tricky part -- the software design, construction, and debugging --
is on its way to completion.

The person inside a full-scale media room will have 360-degree visual
displays of some sort -- high-resolution video or holographic images --
computer-generated and archived. Images can be retrieved from a
library (and added to the library), or they can be constructed by the
person or by the computer. There will be a total-sound audio system
ranging into ultralow and ultrahigh frequencies. But the most
important element is not in the sensory displays, which involve
straightforward if now-expensive technology, but in the
software -- in the way the room is designed to "know" what to
do.

If the media room is to be the universal medium, the room itself must
be able to see and hear the person inside, and "understand" what it
sees and hears well enough to carry out the person's commands.
Ideally, it should understand the person it is dealing with well
enough to actively guide the fantasy or the information search,
based on its knowledge of personal preferences and past
performance. Bioelectronic sensors built into the floors will keep track

of the user's mood. The only thing the room is presumed not to
do is read minds.

One of the ways to describe a media room is "a computer with no
interface," or "a computer that is all interface." When the computer
interface disappears, you are not at the control panel of a machine, but
walking over the Arctic ice, or flying to Harlem, or looking through a
book in a musty old room. How does one envision the capabilities of a
technology that doesn't exist yet? How do you deal with an invisible
computer? If you don't have to worry about how to tell it what to do,
and if its computer-representation capabilities are too large to worry
about, the question shifts from the tool to the task: "Okay, now
that I can go anywhere, including places that don't exist, where
do I want to go?" Brenda, Eric, and their colleagues wanted to know
what new communication styles people might adopt in response to
such a system. Most of all, they wanted to know how it would feel to
use such a system.

The night I watched her and her colleagues fantasize in that room in
Sunnyvale, Brenda's idea was to plan the uses of a future technology
of this sort by using the same kinds of tricks that actors use to create
imaginary spaces: "Magical kinds of things can happen through
improvisation," she told the group, "because it can trick you into
revealing preverbal ideas. What we each bring to this is our capacity to
have inspirations in real time."

The first improvisations were warm-up exercises. Brenda's trip to the
Library of Alexandria was followed by Scott's visit to a hypermirror that
showed him what he looked like in the infrared and gave him a real-
time scan of his brain metabolism in sixteen colors. He watched the
colors of his thought processes as he watched the colors of his thought
processes.

Then the group decided to make Eric play the role of the person using
the system, while everyone else improvised roles as the components of
the media room -- input to the user's vision, mobility, hearing,
emotions, thoughts. In the first try, everyone got into their role with
such enthusiasm that Eric was literally swarming with people mimicking
him, giving him advice, grimacing. He spent his time rather defensively
trying to figure who did what. It was like a combination of twenty
questions and charades, but it revealed something about the
bewilderment of even a technically sophisticated computer user when
faced with a system that does not explain itself but simply acts.

In the next experiment, Susan, acting as the person in the middle of
such a system, decided to try to take control of the elements, and
discovered that all the roles of the different components could be
changed radically by adding a "help agent." The help agent
oriented the user by saying things like "ask her about a place," or "ask
him -- he knows what to look for." The idea was to create a kind of
"informational butler" that would observe both the user and the
information system, keep a record of that individual's preferences,
strengths, and weaknesses, and actively intervene to help the user find

or do what the user wanted to find or do.

The next day, several of the crew were going to Southern California, to
see what a prominent university cognitive science department could tell
them about designing machines that people can use. About a week
later, Brenda and I talked about what she had learned from the
cognitive scientists, and the improvisation exercise.

"The cognitive science people are looking at human-machine
interactions. Naturally, the hired hackers got into the act when the
subject of the discussion was how to teach secretaries to use a file
management system. One of the programmers at the staff meeting
summarized the problem by asking, 'how do we get a secretary to
understand that slash-single quote-DEL will delete a file?' That was his
understanding of the human interface -- a matter of figuring out how
to adapt a human to the esoteric communication protocol some
programmer built into a machine."

That part of a computer game that makes the user step outside the
game world, that doesn't help the user to participate in the pleasure of
the game, but acts as a tool for talking to the program -- that's
where distance comes in. That's what happens to the secretary
when the programmer tells her that slash-single quote-DEL
means "erase this." She doesn't want to ask the computer to
erase it; she simply wants to erase it.

What Brenda was getting at seemed so strange and so counter to
everything I had been taught that it took a while for it to sink in: In
essence, she was saying that when it comes to computer software, the
human habit of looking at artifacts as tools can get in the way. Good
tools ought to disappear from one's consciousness. You don't try
to persuade a hammer to pound a nail -- you pound the nail, with the
help of a hammer. But computer software, as presently constituted,
forces us to learn arcane languages so we can talk to our tools instead
of getting on with the task.

"The tool metaphor gets in the way when it is applied at the level of
the larger system that includes the human operator," Brenda explained.
Even though your programmer gives you a file management system
that is functional in a tool-like way, the weird way the human is forced
to act in order to use the tool creates an unnecessary distance between
the action the human is required to perform and the tool's function.

"We also know, however, that there is another set of computer
capabilities that aren't at all tool-like. Games and creating art, for
example. So what is it that a computer does, in that case? My answer
is that its function is to represent things. Which, in the case of art or
games, means that the function is at least the same as the outcome,
because in art or games, representation is at least part of the
outcome."

Kids don't play video games by the hour because it is a good way to
practice hand-eye coordination, or for any other reason besides the
sheer pleasure of playing. On the other hand, nobody uses a word

processing program out of sheer enjoyment of using the program; they
use a word processor because they want to write something. In the
case of the word processor, the outcome is most important. In the
video game, there is no separation from the user/player and the
world represented in the game. In the word processor, the
command language of the software creates a distance between
the user and the task.

"One strategy in our research is to find out how to eliminate the part
that keeps us distanced." Brenda explained. "I want to reach my
hands right through the screen and do what I want to do," she
added, with the kind of passionate conviction I hadn't encountered
since Engelbart got that faraway look in his eyes and started talking
about what humankind could do with a true augmentation system. I
don't want to enter a bunch of commands," Brenda insisted. "I might
not even want to speak a bunch of commands, if I have to
speak them in a way that is different from the way I normally
talk. I want first-person interaction. Great. But first I have to do
away with all this stuff between me and the outcome.

"What metaphors haven't been used? Maybe the interface is the
barrier. I think that it is more than a technological question. You can't
expect to solve a problem by building a better interface if the whole
idea of interface is based on an incomplete metaphor. To use a real
artsy metaphor that will probably break down under scrutiny, I like to
look at the computer as a system for making magic portals. Like that
moment in The Wizard of Oz when Dorothy opens the door and
everything changes from black and white to color. That is what I want
to happen -- perceptually, cognitively, emotionally. The portal is an
interim metaphor to me. We need something richer. I'm looking for
something that will click into place and re-explain the idea of the
interface.

"I want to make a fantasy that I can walk through," Brenda
explained. "That is what an adventure game tries to do. Long before
computers were available to regular folks, hackers on large mainframe
computers were hooked on adventure games. Now there are adventure
games that you can play on your home computer. What happens when
you try to build a first-person adventure game?

"The first thing I do in this game I want to walk around in is to look at
it. Maybe there are some graphics on the screen. Perhaps the screen is
all around me. Maybe there is some text to read, or a sound track that
reads it to me. All of these are important technical aspects, but they
are peripheral to my concern. All the screen and speakers do is to
establish an environment. Once I look around the environment,
however, I want to interact with it.

"Let's say that the environment of this fantasy is something that a
science fiction writer of the first caliber invented. Say it's a planet that
I'm exploring for the United Federation of Planets. I start walking
through this world. Today, with the state of the interface art as it is, if
I want to move to the north and turn over a stone, I'd tell the

computer, 'Move north. Turn stone.' Note that I have to tell the
computer. I've just stepped out of the fantasy. And you destroy
a fantasy when you step out of it.

"What kind of system enables me to simple move north and pick up
the damn stone? I don't think it's just a question of making the
environment lifelike. It isn't just a technical question for a fancier
projector to solve. It's a question of how the world is established when
it is constructed. How the author established the way in which people
can relate to it.

"Maybe I can look around the planet until I find a guide. Remember the
'help agent' in the media room improvisation? This description of
walking around the world sounds a lot like a theatrical improvisation.
You walk up to the stage, and the director says, 'Okay, this is a new
planet. You play an explorer. Go.' Nine times out of ten, something like
that dwindles away, but if you are lucky you discover something useful
about the character. Very rarely do you look back and say, "That was a
wonderful story.'"

According to Brenda's theory, the reason is rarely memorable, even in
a good improvisation, is because the actors are forced to use part of
their mind to think about being playwrights. To achieve an excellent
dramatic outcome the actor has to think about his character and
manipulate the plot line at the same time, so that it all comes out in an
interesting way. Unless you are an acting genius, you have to trade
part of your acting power in order to think about the play. And you
can't do a great job of crafting a drama if you have the acting job to
juggle.

"This is where I think the computer can assist us," Brenda insists: "I
still think one answer is to put the smarts of the playwright into
a first-person fantasy-creating system.

"It has to be built into the way the imaginary world is constructed.
Sitting on top of all your graphics and voice recognition and speech
synthesis is an expert system that can make informed decisions
about the potential of dramatic situations, using a large enough
base of knowledge about the possible situations that can arise and a
set of rules for sifting through the knowledge base."

Less fantastic, but nonetheless powerful versions of the "expert
system" Brenda was talking about do exist now -- and in the next
chapter we'll take a look at what another infonaut thinks about the
potential of these "knowledge-transferring" programs. The hypothetical
variation Brenda was describing would be able to learn form experience
-- experience with the individual who is using it or with everybody who
has ever used it. Brenda thinks that such a program could approach
the kind of analysis that a drama critic does. "Maybe we can put
Aristotle's rules for good drama in the system to start."

Right now, there are expert systems in existence that can help doctors
to diagnose diseases. Those systems are able to apply diagnostic rules
adapted from human doctors to a large collection of data, a knowledge

base, regarding known symptoms. Substitute drama for disease, and
the elements of drama (like universality and causality) for symptoms,
and the automatic drama expert in our fantasy will be able to pick out
the most dramatic responses and consequences for actions that the
player performs, and weave them back into the fantasy. It's an idea
that seems to be as far ahead of today's entertainment software as
Alan Kay's Dynabook was ahead of the computer hardware of the
1960s.

Assume that you can simulate a medieval castle and give an audience
member a 360 degree, first-person role in the dramatic action, so that
every time you step into the Hamlet world as Horatio or Hamlet or
Ophelia, you make different choices about the outcome. Artificial
intelligence research tells us that you don't have to specifically store all
the possible events that could occur in a giant data base if you can
structure the representation of the world in such a way that its
characteristics are formulated as tendencies to go in certain directions.
When you pick up a stone, for example, you are likely to find crawly
things under it.

Leaving aside the technical arguments about the feasibility of
constructing such a system, Brenda is most concerned about what
effects the experience of encountering such a system like the one she
described might have upon our emotions as well as our cognitions: How
does it feel to experience a world like that? How does it change my
perception to walk through its portals? How do I find out where the
edges are? What kind of transactions can I have with this world?"

The experience Brenda described is the experience at the human
interface -- where the mind and machine meet. The interface
hardware and software are what computer people call the "front
end" of the system. The back end is what the system needs in
the way of smarts so that outcomes end up being dramatically
pleasurable. Right now, you can wander around in an adventure game
and gather treasure and kill monsters and finish by winning or being
killed. There isn't a sense of unfolding drama. In order for the front end
of an adventure game to convey that sense of direct, first-person
drama, it would have to be based on a very sophisticated back end.

"You use existing technology to make scenes branch according to your
decisions, but that doesn't converge on a dramatic outcome, except in
the most mechanical way. But you could take the same world with the
same characters and the same elements and add this sense of drama,
and come out with something that would be more like experiencing a
drama at first hand.

"The kind of system I'm describing has to be able to find out what I
want by remembering what kinds of things I have paid attention to.
The system has to have a good enough model of me, and memory of
how I have acted in the past, to make good guesses about how I'm
likely to act in the future.

"I've tried to describe an element from the simplest thing that I think
my colleagues and I will actually be able to do in the near future. Let's

look down the road ten years. Say we really get the system working
and we know how to synthesize dramatic outcomes and orchestrate
sound tracks and images and give the person who uses the system a
way to affect these representations.

"We can think of such a system not only as a medium for an
interactive fantasy but as a kind of an interface to information that is
not a fantasy. What if the world, instead of planet X or Shakespeare's
Denmark, is the world of whales or the worlds of chemical reactions?
That's a powerful idea that we can see at work right now in the best of
contemporary educational software."

She offered the example of a game in which the players experience the
fantasy of being cadets on a starship. Each cadet would be responsible
for running part of the ship. The players can choose whether they want
to specialize in navigation or propulsion or life support or computer
systems. In real time, they run their parts of the ship. Then something
goes wrong -- the life-support systems are threatened, the reactor is
malfunctioning. Or something interesting occurs -- the exobiologists
have spotted a planet to investigate. The players have to find out what
to do and how to do it. In the first person.

"Now let's look at it from the point of view of drama theory," she
proposed. "You accept easily the idea that I am a space cadet. I accept
it too. This is what happens when a master actor impersonates a
character. When I am impersonating someone, all of me is
impersonating that character. What has to go away, to disappear from
my own behavior to make that possible? The idea that I am me -- the
person who doesn't know what I haven't learned -- has to go away.
The same idea that often gets in the way of learning anything new.

"A willing suspension of disbelief that accompanies a first-
person simulation enables the person who participates to feel
what it would be like to have greater personal power. A world like
that shows us what it's like not to have the limitations that we think
we have in everyday life. When we see how much a kid learns about
predicting simple trajectories and the rules of bodies in motion from
playing even simple video games, I think it is easy to see the
educational potential in using these 'fiction environments' as the door
to worlds of information that are as useful or healthy to know as they
are fun to learn about."

Of course, by this time, I was asking the same question that most of
the people reading this chapter must be asking: "When are we going to
play with these 'fiction environments'? How close is Atari to releasing
actual products based on this research?"

The answer, unfortunately, is that it is unlikely that Atari is ever going
to translate this research into consumer products. Six months after I
talked to Alan Kay and observed Brenda Laurel's research group, the
Systems Research Group was fired en masse. Brenda and Eric were
given five minutes' notice. Alan went to Apple shortly thereafter. Once
again, as in the case of ARC and PARC, it seemed that the
management of the corporation that nurtured the most exciting

research in interactive, mind-augmenting computer systems
seemed to fail miserably when it came to developing products.

After she was fired, Brenda was a lot more willing to talk about the
pressures of doing long-term research for a consumer-product-oriented
company. In her opinion, the explanation for the demise of Atari
Research, and the dramatic reversal of Atari Corporation's fortunes that
led to the drastic cutback, is a simple one. "The Warner people" (who
owned Atari), she claims, "never knew anything about innovation. The
people they hired to run Atari were from Burlington Industries, Philip
Morris, Proctor and Gamble -- dog food boys. How often does dog food
change?"

Before she was in Systems Research, Brenda was in marketing. She
claims that she told Raymond Kassar (former CEO of Atari) that "what
people are going to want from us is not more deadhead
entertainment, but stuff that helps their minds grow. The
largest market of all is the market for personal power, for new
equivalents to opposable thumbs."

Augmentation visionaries like Engelbart, prophets of interactive
computing like Licklider, and infonauts like Alan Kay and Brenda Laurel
tend to talk in grand terms about the ultimate effects of what they are
doing -- the biggest change since the printing press or even since the
opposable thumb. They all seem convinced that their projections will be
vindicated by a technology that will inevitably come into existence
despite the myopia of institutions like SRI, Xerox, and Atari.

With the increasing power of home computers, and the growing
demand for entertainment and educational software, it seems likely
that smaller groups, working in entrepreneurial organizations rather
than academic or large-scale product-oriented institutions, will produce
the fantasy amplifiers and mind augmentors of the near future. One of
the most controversial areas of entrepreneurial research is in the field
of applied artificial intelligence. The subject of the next chapter is
involved in the commercial development of those intriguing programs
that Brenda mentioned, the so-called expert systems that originated in
the pure research that is being conducted at MIT and Stanford, and
which seem to be invading the world of commercial software.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Thirteen:
Knowledge Engineers
and Epistemological
Entrepreneurs

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Thirteen:
Knowledge engineers and
Epistemological Entrepreneurs
". . . It is extremely important that the development of intelligent
machines be pursued, for the human mind is not only limited in its
storage and processing capacity but it also has known bugs: It is easily
misled, stubborn, and even blind to the truth, especially when pushed to
its limits.

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

"And, as is nature's way, everything gets pushed to the limit, including
humans. We must find a way of organizing ourselves more effectively, of
bringing together the energies of larger groups of people toward a
common goal. Intelligent systems, built from communications
technology, will someday know more than any individual about what is
going on in complex enterprises involving millions of people, such as a
multinational corporation or a city. And they will be able to explain each
person's part of the task. We will build more productive factories this
way, and maybe someday a more peaceful world. We must keep in mind
. . . that the capabilities of intelligence as it exists in nature are not
necessarily its natural limits."

Are future computers going to become tools for extending the
power of our minds, or are they going to evolve into a new kind
of intelligent species that operates far beyond the limits of
biological intelligence? Avron Barr, the author of the statement
quoted at the beginning of this chapter, is exploring one of the most
potentially explosive areas human-computer evolution -- the field that
has come to be known as "knowledge engineering."

To me, Barr's specialty seems to be rooted in the same ides that goes
back to Licklider and Bush -- the inevitability of a human-computer
symbiosis. But to many other people, the idea of artificial
intelligence seems to be fundamentally different from
augmentation, in that the artificial intelligentsia appear to be
more interested in replacing human intelligence than extending
it.

Knowledge engineering is but one part of that ever-expanding area of
hardware and software research that constitutes the field of AI. Unlike
other artificial intelligence researchers, Avron Barr is not concerned
with systems that can direct an optical sensor to recognize visual
patterns, or to help a speech-recognition system to understand natural
languages, or direct a robot in the task of climbing stairs. He and his
colleagues are trying to build systems that can transfer
knowledge from experts to novices and that can use the
transferred knowledge to help people make decisions about
specific problems.

Barr's specialty seems to bridge the gap between those who see the
future of computers in terms of "mind tools" and those who see it in
terms of "the next step in the evolution of intelligence." Like the other
people I met who have been involved in building tomorrow's software
tools, Barr has a firm belief in the epochal quality of the changes we
will face when these experiments filter down to the level of public
experience. For example, consider the following scenario:

A general practitioner in a small town in the Southwest was awakened
late one night by an emergency call -- a six-year-old girl had been
admitted to the local hospital. She was comatose, and she had a high

http://www.the-resource.com/resource/barr.htm

fever. The doctor ordered all clinical tests that were available at that
hour in a one-hospital town and called the pathologist. The symptoms,
and the results of the first tests, weren't anything the GP or the
pathologist had seen before. Drugs were available -- the pharmacy was
well equipped, even if specialized expertise was in short supply. But
which drug?

Choosing the proper antibiotic from the hundreds of possibilities was a
matter of life and death for the little girl, and neither the GP nor the
pathologist was comfortable about staking the young patient's life on
guesswork. They took their laboratory results over to the local
community college, where one of the young programmers who always
seemed to be around in the middle of the night used a microcomputer
and a telephone to put them in contact with an expert in Palo Alto,
California, who knew just the right questions to ask about a case like
this.

"Has the patient recently had symptoms of persistent headache or
other abnormal neurologic symptoms (dizziness, lethargy, etc.)?" asked
the specialist in California.

"Yes," replies the local attending physician.

"Has the patient recently had objective evidence of abnormal
neurological signs (nuchal rigidity, coma, seizures, etc.) documented by
physician observation or examination?"

"Yes," replied the pathologist.

With the help of clues provided over the telephone by the expert, the
local doctors were able to administer one more test that narrowed their
search for the disease-causing organism down to one of the three
possibilities suggested by the specialist. There were drugs on hand for
treating the infection that the long-distance expert had helped them
pinpoint. The little girl recovered. The doctor, the pathologist, and the
child's family were grateful.

The specialist, a computer program named MYCIN residing in a
mainframe computer at Stanford Medical Center, chalked up another
diagnostic triumph to its already impressive record.

Although this particular story is fictional, the dialogue is an excerpt
from a real MYCIN consultation. The program does indeed exist, and is
in use as a strictly experimental diagnostic assistant. It is an example
of a whole range of new computer programs known as expert
systems that are now serving as intelligent assistants to human
experts in fields as diverse as medicine and geology,
mathematics and molecular biology, computer design and
organic chemistry. Expert systems are just the first of a whole new
variety of software probes that infonauts like Avron Barr are launching
into the unknown regions of human-machine relationships.

These systems are both research tools and commercial products. A
program called PROSPECTOR has recently helped pinpoint a
molybdenum deposit worth tens of millions of dollars. A program

http://www.eas.asu.edu/%7Edrapkin/556/mycin.html

named DENDRAL, which started out as an artificial intelligence
experiment, is now owned by a consortium of chemical companies,
whose chemists use it to design and synthesize potentially useful new
compounds.

One important difference between an expert system and other kinds of
computer programs is that the program does not simply provide
answers to questions, the way a calculator provides the solutions to
equations. Expert systems do, of course, suggest answers, and
eventually they will venture answers accompanied by a numerical
statement of "confidence" in the answer. But they do more than that.
The most important part of an expert system is in the
interaction between the program and the person who uses it.

The human who is faced with a specialized problem can consult the
specialized program, which is able to ask the human questions of its
own regarding the particulars of the problem. The consultation is a
dialogue that is tailored to the specific case at hand. The program
simulates the decision process of human experts, and feeds back
the results of that process to the human who consults it, thus serving
as a reference and guide for the person who uses it.

Expert systems as they exist today are made of three parts -- a
base of task-specific knowledge, a set of rules for making decisions
about that knowledge, and a means of answering people's questions
about the reasons for the program's recommendations. The "expert"
program does not know what it knows through he raw volume of facts
in the computer's memory, but by virtue of a reasoning-like process of
applying the rule system to the knowledge base; it chooses among
alternatives, not through brute-force calculation, but by using some of
the same rules of thumb that human experts use.

Statistics about how often experts turn out to be right are the ultimate
criteria for evaluating expertise -- whether the expert is a person who
has studied for years, or a computer program that was literally born
yesterday. The methodology for conducting such an evaluation was
suggested in the 1950s, by Alan Turing. The "Turing test" bypasses
abstract arguments about artificial intelligence by asking people to
determine whether or not the system they are communicating with via
teletype is a machine or a person. If most people can't distinguish a
computer from another human, strictly by the way the other party
responds to questions, then the other party is deemed to be intelligent.
A similar strategy has been employed to judge the efficacy of expert
systems. Why not just ask some human experts to distinguish human
from machine diagnoses?

One experiment conducted by the Stanford Medical School began by
submitting to MYCIN case histories of ten patients with different types
of infectious meningitis. At the same time, eight human physicians,
including five faculty specialists in infectious diseases, a research
fellow, and a resident, were given the same information that had been
fed to MYCIN. MYCIN's recommendations were sent, along with the
human physicians' recommendations, also unidentified as such, and a
record of the therapy the patients actually received, to eight non-

Stanford specialists. The outside specialists gave the highest rating to
MYCIN.

In the 1980s, there is little question that expert systems can be
highly effective, if not superior to human expertise, in certain
highly specialized fields. Twenty years ago, few people, even inside
the artificial intelligence community, were confident that it could be
done at all. The normally "pure" research field of artificial intelligence
strayed into this potentially controversial area of applied AI, as it was
bound to, because the questions surrounding expertise are at the core
of the effort to simulate human intelligence.

Edward A. Feigenbaum was one of the people from artificial intelligence
research who decided, in the mid-1960s, that it is important to know
how much a computer program can know, and that the best way to
learn something about the question would be to try to construct an
artificial expert. Joshua Lederberg, the Nobel laureate geneticist,
suggested the task of determining the molecular structure of
compounds, based on data from mass spectrography and guided by the
rules that are known to govern molecular bonds, was an appropriately
difficult and potentially useful problem for artificial intelligence
techniques. Together with software expert Bruce Buchanan and Nobel
laureate biochemist Carl Djerassi, Lederberg and Feigenbaum started to
design DENDRAL, the first expert system, in 1965, at Stanford
University.

Human chemists know that the possible spatial arrangement of the
molecules that make up any chemical compound depends on a number
of basic rules about how different atoms can bond to one another. They
also know a lot of facts about different atoms in known compounds.
When they make or discover a previously unknown compound, they
can gather evidence about the compound by analyzing the substance
with a mass spectrograph. The mass spectrograph provides a lot of
data, but no clues to what it all means.

Conventional computer-based systems had failed to provide a tool for
discovering molecular structures, based on spectrographic data. The
problem is that the rules allow a very large number of "near misses" --
possible structures that almost, but not quite, fit all the data. There
appears to be a "complexity gap" when it comes to the task of sifting
through all the near misses. The far simpler computing processes that
were used to discover simple structures are just not adequate for more
complex structures. DENDRAL was designed to find that one "structure
in a haystack" that perfectly fit the spectrographic data and the rules of
chemical bonds.

It turns out that you can't just feed all the known facts into a
computer and expect to get a coherent answer. That isn't the way
human experts make decisions, and apparently that isn't the way you
coax a computer into making a decision. What you need is an
"inference engine" to fit together the rules of the game, the
body of previously known facts, the mass of new data, then
venture a guess about what it all means.

http://www-cs.stanford.edu/profile/people/feigenbaum.html
http://www-camis.stanford.edu/research/history.html#DENDRAL

Building the right kind of "if-then" program, one with enough flexibility
to use the kind of rules of thumb that human experts employ, was only
the first major problem to be solved. Once you've created the program
structure capable of manipulating expert knowledge, you still have to
get some knowledge into the system. After feeding the computer
program lots of data about molecules, and rules about how they can be
combined in molecular structures, the creators of DENDRAL
interviewed expert chemists, trying to specify how the experts
made their decisions about which combinations and structures
are likely to be useful. The resulting program became a milestone in
the evolution of software, and the first of a series of software tools for
chemists, biologists, and other researchers.

The process of constructing DENDRAL had another useful, unexpected
side effect: The task of extracting judgment-related knowledge from
human experts led to a new subfield known as "knowledge
engineering." "Knowledge engineering" is the art, craft, and
science of observing human experts, building models of their
expertise, and refining the model until the human experts agree
that it works. One of the first spinoffs from MYCIN was EMYCIN -- an
expert system for those people whose expertise is in building expert
systems. By separating the inference engine from the body of factual
knowledge, it became possible to produce expert tools for expert-
systems builders, thus bootstrapping the state of the art.

While these exotic programs might seem to be distant from the
mainstream of research into interactive computer systems, expert-
systems research sprouted in the same laboratories that created time-
sharing, chess playing programs, Spacewar, and the hacker ethic.
DENDRAL had grown out of earlier work at MIT (MAC, actually) on
programs for performing higher level mathematical functions like
proving theorems. It became clear, with the success of DENDRAL and
MYCIN, that these programs could be useful to people outside the
realm of computer science. It also became clear that the kind of
nontechnical questions that Weizenbaum and others had raised in
regard to AI were going to be raised when this new subfield became
more widely known. As the first frighteningly practical applications
to the field of medicine proved when they were created, the
field of artificial expertise involves important ethical as well as
philosophical, psychological, and engineering considerations.

The clearest area of potential danger in applying knowledge
engineering to human medicine is the possibility of misuse through
misunderstanding. Although the people who built the system see
it as a marvelous but thoroughly fallible tool, many people tend
to give too much weight to the recommendation of a computer
simply because it comes from a computer. Since medical advice
often deals in life and death matters, you have to take into
consideration the potential psychological impact of such an "automatic
doctor" when you attempt to build something that gives medical advice
to an expert.

Like all complex issues, the ethics of medical knowledge engineering
have another side. It might be noted by someone from a non-Western,
nonindustrial, or nonurban culture that expertise, particularly medical
expertise, is a desperately scarce resource. The few medical, hygiene,
and agricultural experts who are fighting the biggest humanitarian
problems of the world -- epidemics and famine -- are spread too thin
and are working too hard to keep up with scientific progress in their
fields. Even in major medical centers, expertise in certain important
specialties is a rare commodity.

While so many of the trappings of "modern medicine" -- like CAT
scanners and other medical imaging technologies -- are so expensive
as to be limited to a few wealthy or well-insured patients, the
potential cost per patient of a software-based system is
absurdly low, almost low enough to do some good in a near-future
when the number of critically ill people on earth might number in the
hundreds of millions.

Medicine -- with all its promise and all its difficult ethical implications --
appears to be one of the most promising areas of application for
commercial knowledge engineering. In the mid 1970s, a physician and
computer scientist at Stanford Medical School, Dr. Edward H. Shortliffe,
developed MYCIN, the diagnostic system quoted in the earlier dialogue.
The problems associated with diagnosing a certain class of brain
infections was a technically appropriate area for expert-system
research, and an area of particularly pressing human need because the
speed with which the infecting agent is identified is critical to successful
treatment.

MYCIN's inference engine (the part of the program that makes
decisions by applying general rules to scientific specific data), known as
E-MYCIN, was used by researchers at Stanford and Pacific Medical
Center to produce PUFF, an expert system that assists in diagnosing
certain lung disorders. An even newer system, CADUCEUS (formerly
known as INTERNIST), uses AI techniques to simulate the diagnostic
skills of a specific human physician -- Dr. Jack Meyers of the School of
Medicine at the University of Pittsburgh. Meyers and his partner, Harry
Pople, Jr., a Carnagie-Mellon-trained AI expert, have been storing parts
of Meyers' problem-solving style and his knowledge about the entire
range of medicine, along with an impressive body of information from
the medical literature. CADUCEUS is not yet complete, but it can
already perform creditably when it is submitted difficult cases from the
medical journals.

People told Katherine Fishman, the author of The Computer
Establishment, that their object is to provide "something the physician
would use instead of going to the library or consulting a specialist.
There aren't that many experts available, even at major centers."
Among the sponsoring agencies who have shown interest in CADUCEUS
are NASA, which has an obvious need for such a medical helper in
manned space missions, and The Navy, which could use something
similar for nuclear submarines. Special gear for astronauts and
nuclear submariners might sound remote from most people's

daily lives, but in recent history, the transistor radio, handheld
calculators, and many other examples of new technologies have
traveled from the exotic confines of NASA to the breast pockets
of teenagers around the world in less than ten years.

Like the creators of previous technological advances, knowledge
engineers first had to prove that expert systems could be built at all
and that they were useful. That took about ten years. Next, they had
to find potential areas of application -- a task that didn't take nearly as
long. About two dozen corporations are currently developing and selling
expert systems and services. TeKnowledge, founded by Feigenbaum
and associates in 1981, was the first. IntelliGenetics is perhaps the
most exotic, specializing in expert systems for the genetic engineering
industry. Startups in this field tend toward science-fictionoid names --
Machine Intelligence Corporation, Computer Thought Corporation,
Symbolics, etc. Other companies already established in non-AI areas
have entered the field -- Xerox, DEC, IBM, Texas Instruments, and
Schlumberger among them.

Expert systems are now in commercial and research use in a number of
fields. A partial sampling:

KAS (Knowledge Acquisition System) and TEIRESIAS help knowledge
engineers build expert systems.

ONCOCIN assists physicians in managing complex drug regimens for
treating cancer patients.

MOLGEN helps molecular biologists plan DNA experiments.
GUIDON is an education expert system that teaches students by

correcting answers to technical questions.
GENESIS assists scientists in planning cloning experiments.
TATR helps the Air Force plan attacks on enemy airbases.

It's hard to argue with a molybdenum deposit or a significantly high
rate of successful diagnoses. As the debate over whether software
is capable of acting intelligently dies down in what
mathematicians call an "existence proof," the question of
whether computer technology ought to be applied to such areas
as medicine, air traffic control, nuclear power plant operations,
or nuclear weapons delivery systems is just beginning.

Some critics, prominent members of the artificial intelligentsia among
them, have been sounding alarms over the potential ethical dangers of
relying too much on electronic artifacts like expert systems to make
decisions. Joseph Weizenbaum fears that there is great peril in relying
too much on a technology that is very good at mimicing what are
actually much deeper human thought processes. Expert systems are
the epitome of the kind of "imperialism of instrumental
reasoning" Weizenbaum rails against -- the kind of thinking that
sees all problems as solvable through the kind of analytical,
mechanical processes a computer uses.

In a 1983 interview, Weizenbaum said: "To think that one can take a
very wise teacher, for example, and by observing her capture the
essence of that person to any significant degree is simply absurd. I'd

say people who have that ambition, people who think that it's going to
be that easy or possible at all, are simply deluded."

Avron Barr is a knowledge engineer who does not feel that he is
deluded, and knowledge-based educational systems happen to be one
of the areas of his expertise. Surprisingly, Barr agrees with
Weizenbaum about the potential ethical danger of mixing human lives
and artificial intelligence research: "Artificial intelligence doesn't exist
yet," Barr emphasizes, "but I believe that the kind of research we
have started to explore with knowledge-based expert systems
can eventually create a tool that truly understands human
inquiries. And I'm not sure that people are prepared for the
ethical decisions that will accompany that kind of power."

From our conversations, and from my perusal of his written work, it
has been evident to me that Barr also feels that the potential for using
this technology to assist humanity is well worth pursuing, despite the
dangers of misuse. Besides developing and distributing automated
expertise to both specialists and ordinary citizens as an informational
antitoxin to life in a complicated world, Barr likes to wonder aloud how
else might these software entries be used to further positive ends. His
personal dream is to eventually build an expert system that is an
expert in helping humans reach agreement. If chemists and physicians
can use intelligent assistants, why can't diplomats and arms-control
negotiators avail themselves of the same assistance? Avron Barr's
odyssey through philosophy, psychology, and computer programming
has led him to suspect a deep connection between what we know
individually and how we agree collectively.

I met Avron Barr in a short-order restaurant in the heart of artificial
intelligence country -- an establishment named "late for the Train,"
located next to the Menlo Park train station. If there is an
eavesdropping hit list for technological spies, this seismographic
hotcake-and-sprouts joint has to be in the top five. SRI
International, one of the oldest robotics research centers, and the
birthplace of PROSPECTOR, the molybdenum-sniffing software
assistant, is a few shady, tree-lined, affluent blocks away. The
tweedy old fellow buttering a scone at the next table looked like
a central-casting stereotype of a Nobel laureate.

Barr was wearing a white shirt and tie when we met. He appears to be
in his midthirties. His hair is brown and well-groomed, his moustache
neatly trimmed -- another one of the many babyboomers who might
have been hippies in the sixties, but who now go to hairstylists twice a
month. He looks like the young man who used to put your groceries in
the bag.

Barr got into programming in the first place because he needed
a job, and he became involved with artificial intelligence because AI
programmers seemed to have the only tools he could find that were
capable of helping him to create the kind of programs he needed in his
work for a research team. His need for a job came after he dropped

out of graduate school. His undergraduate work in physics and math at
Cornell led to Berkeley, in 1971, where a few months as a physics
graduate student made it clear to him that he really didn't want to be
a physicist, after all.

At that point, a career in computer science wasn't even on his list of
goals, but programming happened to be one of his marketable skills --
he had worked his way through Cornell doing scientific programming
for various faculty members, stumbling along in FORTRAN, which he
taught himself from a book one weekend. After he abandoned his
physics career and he began to look for employment, an announcement
for a research associate with programming experience came to his
attention. The Stanford job called for a resident software handyman in
a laboratory that was exploring the technology of instruction. He took
it.

He had become a significant contributor to the research team, as well
as the hired computer jockey, when he joined a small research group
at Stanford Institute of Mathematical and Social Sciences. Over the
next several years, he helped design a program that taught beginners
how to program in the language BASIC.

"Which meant that I had to go back to thinking about what kinds of
people were going to be dealing with computers," Barr recalls, "and
finding out what kinds of problems those people might have in the
process of learning their first computer language.

"One of the first things that is evident is that computer programs are
very different from most of the things we learn in school because
programmers rarely if ever hit the right answer the first time out.
Programming is debugging. So being wrong is not so much
something to be avoided at all costs, but should be seen as a
clue to the right way of doing it. That's why it was actually an
environment rather than just an instructional program. We tried to
build a curriculum for teaching BASIC, along with the handholding help
people seemed to need in learning software, right into the BASIC
language interpreter."

An interpreter, it must be remembered, is not a person who specializes
in deciphering computer jargon, but a kind of computer program that
can convert programming commands written in the kind of high-level
language that people find easier to write into a machine-language form
that the computer can read.

The very primitive communications between programmer and
interpreter created much of what beginners have always found
frustrating about learning old-style programming. Interpreters cannot
create programs that will run successfully on computers unless the
programs are written perfectly, without a single minor error. If a
parenthesis is out of place, the interpreter simply stops operation and
puts some spine-chilling message on the screen -- the infamous "Fatal
Error" or the enigmatic "Syntax Error."

The communication between first-time BASIC programmers and the
BASIC interpreter necessary to run their programs was the part of the

system Avron Barr and his colleagues were trying to make easier and
less frustrating to the human user: "Usually, interpreters return cryptic
'error messages' when they are fed a program with a bug in it," Barr
explains. "The program we were building was meant to use the error
messages and the debugging as a way to learn how to program."

In order to build an interpreter that not only is able to identify
errors, but also can give beginning users hints about how to go
about solving the problem, Avron had to go beyond the normal
tricks of the programming trade and learn about some of the
exotic new notions that were beginning to emerge from AI
research. This wasn't standard operating procedure for the vast
majority of programmers: To most computer programmers,
even scientific programmers, AI was esoteric hocus-pocus that a
clique of obsessed academics did with a lot of money from the
Defense Department.

When the intelligent interpreter project was finished, Barr entered the
computer science department as a graduate student at Stanford, where
he encountered Ed Fiegenbaum. Although he had been working as a
professional programmer, and he was surrounded by artificial
intelligence types, and had even picked up a few tricks from AI
hackers, this was Barr's first formal exposure to the field. Feigenbaum
had an idea about writing and editing a book. Avron took on the task.
They thought they could produce a general handbook on AI by
the end of the summer. It took five and a half years.

Besides the course requirements of his graduate work, Barr's paying
job required him to produce a general text from the contributions of
hundreds of AI researchers, a book that someone in a noncomputer
related field could use to get an overview of the most significant work
that had been done in AI. The job stretched out longer and longer, and
during the time it took to complete his editing duties, he progressed
from his master's degree to a Ph.D. in cognitive science.

By the late 1970s, Barr was not alone in feeling that the exploration
and engineering of knowledge -- learning how it is acquired by
humans or machines, how it is represented in the mind or in software,
how it is communicated between humans and computers and
disseminated throughout a culture -- was a central problem in
philosophy, psychology and artificial intelligence that might well
be answered in surprising ways by the new discipline created by
the builders of expert systems.

Computers can track large amounts of information, and they can move
through that information very quickly. But when it comes to solving
any but the simplest problems -- the kind that a human toddler or a
chessmaster can handle easily -- computers run up against a severe
problem. Large is never large enough when it comes to the computer
memory needed, and fast is never fast enough in terms of
computational speed. There is simply too much information in the world

to solve problems by checking every possible solution. The difference
between brute-force calculation and human knowledge is the
missing link (and holy grail) of hard-core AI research.

Personal knowledge is a tricky thing to describe, and hence a difficult
thing for a computer to emulate. Knowledge is more than a collection
of facts, frozen into some rationally coded order. How do our minds do
all the things they do when we're thinking, without consciously thinking
about how to do it? How do you know which details in a sea of
information are worth your attention? The difference between a novice
and an expert, for example, is not simply a quantitative question of
more stored facts about the area of expertise; the difference hinges,
instead, on the ability to make judgments about novel problems in the
field.

Chess has been the classic example of the difficulties of emulating
expertise with computer programs. It is a finite game, with a limited
number of clearly allowable moves, each of which have perfectly
specified outcomes. Chess qualifies as a formal system in the Turing
machine sense, and hence can be imitated by a computer. Give the
computer the rules, the starting position, and the opponent's first
move, and the computer is capable in principle, of calculating all the
possible responses to that move and formulating a response based on
that calculation.

Yet, after a quarter of a century of effort, nobody has come up with an
unbeatable chess playing program. The reason that brute-force
calculation hasn't defeated a human grandmaster is not rooted so
much in technology as in mathematics: the combinational explosion is
the term for the brute-force barrier noted by Shannon back in 1950.
Even with only 64 squares and a limited number of allowable
moves, the number of possible moves in chess multiplies so
quickly that it would take uncountable years to evaluate all legal
possibilities.

In chess and many other formal systems, the correct answer is a
member of a very large number of possible alternatives. The problem
posed by an opponent's move is best answered by a move that will
lead to capturing an opponent's king. Hidden among the huge number
of possible countermoves for each one of the opponent's move is one
answer or a small group of answers that would have the best chance of
achieving the final goal or some intermediate goal. The abstract
domain in which the solution is hidden is known as a "problem space."

The brute-force method of finding the right chess move by generating
and checking each and every possibility that could exist according to
the rules is known as an "exhaustive search of the problem space."
Problem space is where the combinational explosion lurks, waiting to be
triggered by any branching more than a few levels deep.

The problem of the combinational explosion can be easily visualized as
a tree structure. If the decisions needed to choose between different
options are seen as the branches of a tree, then a simple two-decision
example would yield two branches on the first move, four on the next,

eight on the one after that. By the time you get to sixty-four moves,
each with twice as many branches as the previous move, you won't be
able to see the forest for the branches. If you increase the number of
cases to be decided between from two to three, it gets even more
snarled: After two moves on a triple-branching tree, there are nine
branches (instead of four); after three moves there are twenty-seven
(instead of eight), etc., ad infinitum. So you have to build a system to
weed out the legal but absurd moves, as well as a strategy to evaluate
two or three moves in advance.

What a machine needs to know, practically before it can get started, is
that the mysterious something that human chessmasters know that
enables them to rule out all but a few possibilities when they look at a
chessboard (or hear a chess situation described to them verbally).
When a human contemplates a chess position, that person's
brain accomplishes an information processing task of cosmic
complexity.

The human brain has obviously found a way to bypass the rules
of exhaustive search -- a way to beat the numbers involved in
searching problem space. This is the vitally important trick that seems
to have eluded artificial intelligence program designers from the
beginning.

What does the human chessmaster do to prune the tree created by
brute-force programs, and how can computers help other humans
perform similar tasks? The point of expert-system building is not to
outdo the brain but to help human reasoning by creating an intelligent
buffer between brain processes and the complexities of the world --
especially information-related complexities. A problem-pruning tool
could be an important component of such an informational
intermediary.

Human brains seem to accomplish tasks in ways that would require
absurd amounts of computer power if they were to be duplicated by
machines. The first expert-systems experiments were not focused
exclusively on machine capabilities nor on human capabilities, but on
the border between the two types of symbol processors. How could a
machine be used to transfer expertise from one human to another? The
emerging differences between machine capabilities and human
cognitive talents were brought into sharper focus when it was
demonstrated by systems like MYCIN that this kind of software was
capable of measurably augmenting the power of human judgment.
Doctors who used MYCIN to aid their diagnostic decision-making ended
up making accurate diagnoses more often than they did before they
used the program to assist them. The "reasoning" capabilities of
the first expert systems were actually quite primitive, but the
way these systems worked as "consultation tools" made it clear
that there was great potential power in designing software
systems that could interact with people in ways that simulated
and augmented human knowing.

The present link between the technology of augmenting human

intellect, the business of building expert systems, and the science of
artificial intelligence, Avron Barr and his colleagues, is the role of
transfer of expertise both as a practical, valuable tool and as a probe
for understanding the nature of understanding:

A key point in our current approach to building expert systems is that these
key programs should not only be able to apply the corpus of expert
knowledge to specific problems, but that they should also be able to
interact with the users just as humans do when they learn, explain, and
teach what they know. . . . These transfer of expertise (TOE) capabilities
were originally necessitated by "human engineering" considerations -- the
people who build and use our systems needed a variety of "assistance" and
"explanation" facilities. However, there is more to the idea of TOE than the
implementation of needed user features: These social interactions --
learning from experts, explaining one's reasoning, and teaching what one
knows -- are essential dimensions of human knowledge. These are as
fundamental to the nature of intelligence as expert-level problem-solving,
and they have changed our ideas about representation and about
knowledge.

In order to make a decision with the help of an expert system, a
human user must know more than just the facts of the system's
recommendation. First, the human has to learn how to communicate
with the computer; then he or she needs to know how the system
arrived at its conclusion, in terms that he or she can understand. And
in order to tell the human about the steps of its reasoning process,
such systems must have a means for knowing what they know.

By this point, the exercise has become more than a mechanical search
through long lists of possibilities. Problem-solving is only part of the
function of a system that must convince a human that a solution it has
found is indeed the correct one. The internal and external
communication aspects of this transfer process, Barr suspects, offer
clues to some of the most significant problems in artificial intelligence
as well as intellectual augmentation research:

We are building systems that take part in the human activity of transfer of
expertise among experts, practitioners, and students in different kinds of
domains. Our problems remain the same as they were before: We must
find good ways to represent knowledge and metaknowledge, to carry on a
dialogue, and to solve problems in the domain. But the guiding principles of
our approach and the underlying constraints on our solutions have been
subtly shifted: Our systems are no longer being designed solely to be
expert problem solvers, using vast amounts of encoded knowledge. These
are aspects of "knowing" that have so far remained unexplored in AI
research: By participation in human transfer of expertise, these systems
will involve more of the fabric of behavior that is the reason we ascribe
knowledge and intelligence to people.

Like Doug Engelbart and Alan Kay, Barr feels that future generations
will be less inhibited than present-day computer builders and users
when it comes to stretching our ideas of what machines and humans
can do. This adjustment of human attitudes and computer capabilities
is a present-day pragmatic concern of knowledge engineers, and a
long-term prerequisite for the kind of human-machine symbiosis
predicted by Licklider.

In his conversations, lectures, and writing, Barr often refers to what he
and other cognitively oriented computer scientists call "the flight

metaphor." Early AI researchers, who were seeking pragmatic
means to deal with the question of whether machines could
think, compared themselves to those human inventors who not
so long ago believed they would eventually build flying
machines: "Today, despite our ignorance, we can point to that
biological milestone, the thinking brain, in the same spirit as the
scientists many hundreds of years ago pointed to the bird as a
demonstration in nature that mechanisms heavier than air could fly,"
wrote Feigenbaum and Feldman in 1963.

"It is instructive to pursue this analogy a bit farther," Barr wrote in
1983:

Flight, as a way of dealing with the environment, takes many forms -- from
soaring eagles to hovering hummingbirds. If we start to study flight by
examining its forms in nature, our initial understanding of what we are
studying might involve terms like feathers, wings, weight-to-wing-size
ratios, and probably wing flapping, too. This is the language we begin to
develop -- identifying regularities and making distinctions among the
phenomena. But when we start to build flying artifacts, our understanding
changes immediately.

Barr then cited another contributor to the flight metaphor, Seymour
Papert of MIT, Project MAC, and LOGO fame, who pointed out that the
most significant insights into aerodynamics occurred when inventors
stopped thinking so extensively about how birds flew. Papert stated to
a 1972 European seminar attended by Barr: "Consider how people
came to understand how birds fly. Certainly we observed birds.
But mainly to recognize certain phenomena. Real understanding
of bird flight came from understanding flight; not birds."

The most difficult barrier faced by the first designers of artificial
aviation was not in the environmental obstacles their inventions faced,
nor in the nature of the materials and techniques they had available,
but in their ideas of what flight could and could not be. The
undeniable proof of the simple but incredible idea that flight
does not require flapping wings was the most important thing
achieved by the Wright brothers.

At the turn of the century, a fundamental part of the problem facing
aviation designers lay in abandoning prejudices about the way things
actually were so that the possible might be discerned. Those who
wanted to build flying machines had to abandon their fixation with the
way nature solved the problem of evolving a flying lifeform so that they
might see beyond birds to understand the nature of flight. In the same
sense, a fundamental part of the problem of artificial intelligence design
lies in the ability to see beyond brains or computers to understand
something about the nature of intelligence.

Cognitive scientists know that such knowledge can shed light on the
way human brains work. Barr points out that such knowledge might
expand into varieties of intelligence as different from human
intelligence as a jet plane is different from an eagle.

If the flight metaphor could be faithfully extrapolated to the artificers of
thinking machines and engineers of programs that understand, Barr
claims, new worlds of unimaginable information processing mechanisms
would become possible -- mechanisms that would be compatible but
quite different from the way human brains do things:

. . . Every new design brings new data about what works and what does
not, and clues as to why. Every new contraption tries some different design
alternative in the space defined by our theory language. And every attempt
clarifies our understanding of what it means to fly.

But there is more to the sciences of the artificial than defining the "true
nature" of natural phenomena. The exploration of the artifacts themselves,
the stiff-winged flying machines, because they are useful to society, will
naturally extend the exploration of the various points of interface between

the technology and society. While nature's explorations of the
possibilities is limited by its mutation mechanism,
human inventors will vary every parameter they can
think of to produce effects that might be useful --
exploring the constraints on the design of their
machines from every angle. The space of "flight"
phenomena will be populated by examples that nature
has not had a chance to try.

Intelligence, like flight, is a way of dealing with the environment.
Intelligence, again like flight, conveys a survival advantage to the
organism or species that possesses it. The sheer usefulness, the
practical value to society of being able to fly from place to place
ensured better artificial ways to fly. Barr suggests that expert
systems and other knowledge-based technologies are the kind
of "flying machines of the mind" that will have an equally high
utilitarian value, and the economics of the marketplace will
therefore drive the future exploration of their capabilities.

The "applied" part of "applied AI" is one of the most significant aspects
of expert systems, in Barr's opinion, because the linkage of intelligent
systems with valuable social goals guarantees the further development
of the young science. Because the development of better products in
this particular market also means the development of better means of
augmenting human intelligence, the evolution of this kind of machine
will be rather closely coupled with the future evolution of human
thought:

It is the goal of those who are involved in the commercial development of
expert-systems technology to incorporate that technology into some device
that can be sold. But the environment in which expert systems operate is
our own cognitive environment; it is within this sphere of activity -- people
solving their problems -- that the eventual expert-system products must be
found useful. They will be engineered to our minds.

. . . It is a long way from the expert systems developed in the research
laboratories to any products that fit into people's lives; in fact it is difficult
even to envision what such products will be. Egon Loebner of Hewlett-
Packard Laboratories tells of a conversation he had many years ago with
Vladimir Zworykin, the inventor of television technology. Loebner asked
Zworykin what he had in mind for his invention when he was developing

the technology in the 1920s -- what kind of product he thought his efforts

would produce. The inventor said that he had a very clear
idea of the eventual use of TV: He envisioned medical
students in the gallery of an operating room getting a
clear picture on their TV screens of the operation being
conducted below them.

One cannot, at the outset, understand the application of a new technology,
because it will find its way into realms of application that do not exist.
Loebner has described this process in terms of the technological niche,
paralleling evolution theory. Like the species and their environment,
inventions and their applications are co-defined -- they constantly evolve
together, with niches representing periods of relative stability, into a new

reality. . . . Thus, technological inventions change as they
are applied to people's needs, and the activities that
people undertake change with the availability of new
technologies. And as people in industry try to push the new
technology toward some profitable niche, they will also explore the nature
of the underlying phenomena. Of course, it is not just the scientists and
engineers who developed the new technology who are involved in this
exploration: Half the job involves finding out what the new capabilities can
do for people.

In order to build an expert system, a knowledge engineer needs
to encode the rules a human expert uses to make decisions
about problems in a specific field, then connect those decision
rules with a large collection of facts about that field. The human
expert is asked to test the software model. If the human expert
disagrees with the system's suggested solution to a problem, then the
human asks the system to reconstruct the chain of rules and facts that
led to its decision.

By pinpointing the places where the program went wrong, the human
expert and the knowledge engineer turn their rough mock-up into a
working expert system by a process of progressive debugging.
Eventually, they end up with a program that will agree with the human
expert a very high proportion of the time. Consensus comes in when
you ask a second expert to evaluate the system. In real life, human
experts disagree with one another, even at the highest levels of
expertise. Which means that no matter how well an expert system
agrees with one particular human expert, that does not guarantee that
another expert won't catch the software making a wrong decision.

The key to taking advantage of these natural disagreements between
experts, Barr realized, was to build in a mechanism for
"remembering experiences," for keeping around old decisions, even
if they were wrong, and creating new rules from the outcome of
disagreements. Taken far enough, this aspect of the system leads
directly to one of the hottest issues in AI research -- the question of
whether programs can learn from experience. Barr was only interested
in one specific aspect of this issue -- the possibility of creating a means
of tracking decisions and keeping track of instances where human
experts disagree with each other.

"When two experts disagree," Barr explains, "they try to find ways to
show each other cases where the other's knowledge is not appropriate
to produce what they both agree would be the right result. The first
steps of establishing consensus, then, involve figuring out where you
do agree. Then you can get on to the second step -- trying to find
exactly where in your individual knowledge systems the disagreement
lies.

"Locating the point of disagreement usually turns out to be an
important part of the process, because in consciously looking for
disagreements the experts realize that they don't share the same
meanings for the terms they are using or that they don't share a
compatible description of the goal.

"This kind of debugging isn't exciting, but it creates a foundation for
the third step of consensus, where the experts have to decide what to
do about each other. They can agree that one of them was wrong, they
both can remain convinced that they are right, they can decide that
they are both wrong or both right. They can look for an investigation or
experiment that could decide the issue. Or they can decide that they
both have to wait for new knowledge."

Barr believes consensus assistance is only a start on "the ultimate kind
of thing we can do with intelligent assistants. Consensys started out as
a way of describing how you communicate with one of these systems,
in particular, how you might push the expert system to deal with two
different human experts and incorporate the value of the differences
that the two experts might have.

"My dream has to do with the idea that there is a purpose for us all
being here, and we're all necessary for discovering that purpose. Each
of us has our own little peephole onto the building being constructed.
None of us know what it is, but each of us has a slightly different
perspective. And all of those perspectives are necessary to figure out
what's being built. It's strange that we can achieve so much as a
culture in such short time, and we can get all these great ideas about
how we got here and how the universe works, and yet know so little
about the point of it all. I think that's a clue that computation has a
role to play.

"I think of computation as an abstract idea about what it is to
share an interpretation of the environment. Computation involves
systematic manipulation of symbols, and symbols have a cognitive
relation to the world. We need those intermediate messages between
our internal representations in order to share perspectives on the
world.

"I think it is indeed possible that these kinds of systems will someday
be used as a way to work out differences between people. The
understanding that is necessary for that to begin to happen involves
admitting that we don't know what the purpose is, then finding out
why we don't know, and figuring out together how we might come to
understand. Perhaps computers can play a role in understanding that
purpose.

"This might sound very philosophical, but the nature of understanding
is at the core of the problems AI programs are up against right now.
Pattern recognition in artificial vision or hearing, the ability to
understand natural language, the emulation of problem-solving, the
design of an intelligent computer interface -- all of these research
questions involve the nature of understanding. We don't know
what the purpose of understanding is, or why you have to know a
whole lot about the world in general to recognize a face or understand
a sentence.

"I think most of us believe that understanding is better than not
understanding, and that the more we understand the better off we'll
be. And I think that the descendants of today's knowledge-based
expert systems will help us all to better understanding. Each of us will
be able to understand better because we'll be interacting with people
and with information through the assistance of expert tools. They may
even help us understand things that nobody understands."

Few people object to the notion of understanding things that nobody
understands -- until it is suggested that the agent for achieving that
understanding might be an intelligence that is made of silicon rather
than protoplasm. The AI infonauts might be on a track that ultimately
will bypass the near-future technologies that augment, but do not
surpass, human intelligence. If Barr and his colleagues are correct,
then their ideas offer strong reinforcement for the speculations that
Licklider made in 1960, when he introduces the idea of a coming
human-machine symbiosis. Licklider suggested that such a symbiosis
was an intermediate step for the interim decades or centuries before
the machines surpass our ability to keep up with them.

Even if the human-machine partnership is to be an intermediate
relationship, lasting only a few human generations, those next few
generations promise to be exciting indeed. When we look at the
history of computing, it is clear that the experts consistently
underestimate the rate at which this technology changes. Even the
boldest AI pundits might be seriously underestimating the
technological changes that will occur in the next fifty or one
hundred years.

The paths to the future of mind-augmenting technology appear to be
fanning out, the range of alternatives becoming wider and less
predictable. It is possible, given past developments, that all of these
paths will lead to distinct new technologies, and will precipitate
significant changes in human culture. One direction seems to involve
the kind of interactive, first-person fantasy amplifiers exemplified by
the work of people like Alan Kay and Brenda Laurel. Engelbart's
dreams of intellectual augmentation furnish a different model of how
the universal tool might evolve. In the next chapter, we'll look at yet
another path -- one that is more connected to the history of literature
than the history of machines.

Ted Nelson, our final infonaut, envisions a future in which the entire
population joins the grand conversation of human culture that has

heretofore been restricted to those few creators whose works have
found their way to library shelves. Wild as his predictions may be, they
have to be considered seriously, in light of the uncannily accurate
forecasts he made back in the "old days" of personal computer history
-- the 1960s and 1970s.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

read on to
Chapter Fourteen:
Xanadu, Network
Culture, and Beyond

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

April, 2000: a revised edition of Tools for Thought is available from MIT
Press, including a revised chapter with 1999 interviews of Doug
Engelbart, Bob Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

The idea that people could use computers to amplify thought and
communication, as tools for intellectual work and social activity, was not an
invention of the mainstream computer industry or orthodox computer science,
nor even homebrew computerists; their work was rooted in older, equally
eccentric, equally visionary, work. You can't really guess where mind-amplifying
technology is going unless you understand where it came from.

- HLR

Chapter One: The Computer Revolution Hasn't Happened Yet
Chapter Two: The First Programmer Was a Lady
Chapter Three: The First Hacker and his Imaginary Machine
Chapter Four: Johnny Builds Bombs and Johnny Builds Brains
Chapter Five: Ex-Prodigies and Antiaircraft Guns
Chapter Six: Inside Information
Chapter Seven: Machines to Think With
Chapter Eight: Witness to History: The Mascot of Project Mac
Chapter Nine: The Loneliness of a Long-Distance Thinker
Chapter Ten: The New Old Boys from the ARPAnet
Chapter Eleven: The Birth of the Fantasy Amplifier
Chapter Twelve: Brenda and the Future Squad
Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs
Chapter Fourteen: Xanadu, Network Culture, and Beyond
Footnotes

Chapter Fourteen:
Xanadu, Network Culture, and Beyond
"Computer was a bad name for it. It might just as well have been called
an Oogabooga Box. That way, at least, we could get the fear out in the
open and laugh at it."

Ted Nelson is one of the most outrageous and probably the funniest of
the infonauts. Of pronouncements like the one quoted above, he likes
to say, " If that sounds wild, it means you understand it" -- a
statement that could apply to his life as well as his ideas. He's

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153
http://www.rheingold.com/texts/tft/14.htm
http://www.xanadu.com.au/xanadu/

been called "a tin-pot Da Vinci," and "a weirdo who thinks he's a titan"
-- and that's how he describes himself. Opinion in the computer
community is mixed when it comes to the question of whether
Nelson will ever amount to anything besides a gadfly,
pamphleteer, and tinkerer. He seems to have either inspired or
irritated most of the key figures in contemporary computing --
academic, commercial, or underground.

Even in a crowd of precocious, eccentric loners, Ted seems to
set himself apart from the rest. His fate is less certain than those
who started augmentation research in the early 1960s or who created
the homebrew computer movement in the mid 1970s. Alan Kay is
closing in on the marketable version of his fantasy amplifier. Bob Taylor
continues to catalyze the development of on-line intellectual
communities. Evans & Sutherland is an extremely successful flight-
simulation company, and Ivan Sutherland is a millionaire.

But the idea people in universities and corporate laboratories, the
research and development pioneers who made the technology possible,
were not the only contemporaries whom Nelson watched and applauded
in the mid 1970s as they streaked past him on their way to
somewhere. As had happened so often before, some unknown young
people appeared from an unexpected quarter to create a new way to
use the formerly esoteric machinery. The legend is firmly established by
now, and Ted was the first to chronicle it, in The Home Computer
Revolution.

By the mid-1970s the state of integrated circuitry had reached such a
high degree of miniaturization that it was possible to make
electronic components thousands of times more complicated
than ENIAC -- except these machines didn't heat a warehouse to 120
degrees. In fact, they tended to get lost if you dropped them on the
rug. In 1971, a team at Intel Corporation developed the special
integrated circuits that contained all the components needed to make a
fairly powerful von Neumann-type computer -- the 4004, followed by
the 8008 "computer-on-a-chip."

At the time it was invented, nobody realized that the
microprocessor, one of thousands of electronic components
churned out every year, would become a household word. At
that point, probably no more than a few score highly placed or
technically fanatic people in the world had computers in their homes for
their personal use. IBM and DEC didn't exactly see the invention of the
microprocessor chip as the signal to start producing consumer
computers.

In 1974, a fellow in New Mexico named Ed Roberts, president of a
company called Micro Instrumentation and Telemetry Systems (MITS),
happened upon the 8008 chip and got a notion. The chip itself was
useless to anyone but an electronic engineer. It had an "instruction
set" of "firmware" primitive commands built into it, an
arithmetic and logic unit, a clock, temporary storage registers,

http://www.es.com/
http://www.intel.com/intel/index.htm

but no external memory, no input or output devices, no circuitry
to connect the components together into a working computer.

Roberts decided to provide the other components and a method for
interconnecting them and sell the kits to hobbyists. In January of
1975, Popular Electronics magazine did a cover story on "a
computer you can build yourself for $420." It was called the Altair
(after a planet in a Star Trek episode). Roberts was hoping for 200
orders in 1975, to keep the enterprise alive, and he received more
than that with the first mail after the issue hit the stands.

Bill Gates and Paul Allen were nineteen and twenty-two years
old when they wrote a version of BASIC for the Altair. They went
to New Mexico to work with MITS, developing software for the first
hobbyist computers. It had been obvious from day one that a great
many people wanted to have computers of their own. MITS had the
usual problems associated with a successful start-up company. Roberts
eventually sold it. In 1977, Commodore, Heathkit, and Radio Shack
began marketing personal computers based on the interconnection
method established by the Altair -- still known as the S100 bus.

Steve Wozniak and Steve Jobs started selling Apples in 1977 and
now are firmly established in the annals of Silicon Valley garage-
workshop mythology -- the Hewlett and Packard of the seventies
generation. Gates and Allen became Microsoft, Inc. Their company sold
over $50 million worth of software to personal computer users in 1983.
Microsoft is aiming for the hundred-million-dollar category, and Gates
still has a couple more years before he reaches the age of thirty.

Alan Kay and Bob Taylor and Ivan Sutherland have already been
acknowledged for their past accomplishments, and look forward to the
completion of their future projects under the auspices of well-funded
and prestigious organizations. Gates and Allen and Wozniak and Jobs
are multimillionaires working on their first billions. They all have what
they need to materialize the tools and toys they have dreamed
about for decades. Ted Nelson's fortunes, have not (yet) turned
out so spectacularly.

What Ted Nelson and his long-suffering associate Roger Gregory have
now is a long program written in the "C" language -- a program that is
either a future goldmine for Ted Nelson and a boon to all humankind,
or yet another crackpot boondoggle on the fringes of computer history.
Unsettled as his future might be, what he had in the past was
the foresight, the orneriness, and the tenacity to talk clearly
and plainly about the computer empire's new clothes.

Ted Nelson was another one of the few people who saw the personal
augmentation potential of computers early in the game and grasped
the significance of the work being done at Utah, SRI, MIT and PARC.
Unlike many of the more sheltered academics, he also saw the
potential of a hobbyist "underground." Nelson chose to bypass

http://www.hyperweb.com/altair/
http://alethea.ukc.ac.uk/SU/Societies/StarTrek/Episodes/TOS/3
http://alethea.ukc.ac.uk/SU/Societies/StarTrek/Episodes/TOS/3
http://alethea.ukc.ac.uk/SU/Societies/StarTrek/Episodes/TOS/3
http://library.microsoft.com/msinfo/mshist.htm
http://www.sri.com/
http://web.mit.edu/
http://www.parc.xerox.com/

(and thereby antagonize) both the academic and industrial
computerists by appealing directly to the public in a series of
self-published tracts that railed against the pronouncements of
the programming priesthood.

Nelson's books, Computer Lib, The Home Computer Revolution,
and Literary Machines, not only gave the orthodoxy blatant
Bronx Cheers -- they also ventured dozens of predictions about
the future of personal computers, many of which turned out to
be strikingly accurate, a few of which turned out to be bad
guesses.

As a forecaster in a notoriously unpredictable field, Ted Nelson
has done better than most -- at forecasting. His business and
scholarly ventures have yet to meet with success in either the
academic establishment or the computer marketplace. He has a
history of disenchanting and antagonizing the people who have
enough respect for his wild talents to take the risk of hiring him.
He's currently on his "third career crash." and still has a while to wait
before he knows whether the stock he holds in the company that is
going to market his dream will make him a millionaire, thereby
vindicating his long struggle, or leave him penniless, thereby branding
him as a bona fide crank instead of a late-blooming visionary.

Like so many other computer prodigies, Ted Nelson started his often
lonely and always stubbornly unique intellectual journey when
he first realized what they were trying to do to him in school. "I
hated school all my life," he claims, "from the first grade through high
school, unrelentingly and every minute. I have never known anyone
who hated school as much as I did, although my assumption is that
other dropouts do."

Despite his repeated clashes with educational authorities, Ted Nelson
managed to establish himself as an "extreme loony on campus"
at Swarthmore , in the late 1950s, a place and an era where extreme
loonies were rather more rare than they became a decade later. He
also managed to graduate with an academic record good enough to
give him his choice of graduate schools. He decided on Harvard, an
institution known to tolerate intellectual arrogance as long as it was
accompanied by near-genius originality.

In the fall of 1960, during his second year of graduate school, Ted
Nelson found out about computers, and not a moment too soon.
He was drowning in his own information, carrying around an
already monumental collection of barely collated notes about his
abundant dreams and schemes. He found out about Vannevar
Bush's paper and embraced the idea that he could use a computer to
keep track of his own prodigious stream of thoughts and sketches.

Ted was disappointed to discover that there were no computers

http://www.sccs.swarthmore.edu/

equipped or programmed to perform such a service. Down the road at
MIT, the first time-sharing computers were only beginning to be built.
But Ted needed a storage and retrieval system to keep track of
his notes, and it seemed like such an obvious way to use
computers as aids to creative thought that he set out to create
such a program himself. Twenty-three years later, he admitted:
"It seemed so simple and clear to me then. It still does. But like
so many beginning computerists, I mistook a clear view for a
short distance. "

The Harvard course in computer programming that Ted took in 1960
used the only computer then available at Harvard, the IBM 7090 at the
Smithsonian Observatory. As a term project, Ted decided to write a
machine-language program that would enable him to store his notes
and manuscripts in the computer, to change and edit drafts in various
ways, and produce final printed versions. Somewhere around the forty-
thousandth line of his program, it dawned on him that his first
estimates of the magnitude of the task -- and the amount of time it
would take to establish it -- had been overoptimistic.

Nelson's inability to create something even though he was able to
clearly envision it is not unusual in the software world. The problem is
so widespread that one of the unofficial rules of computer
programming (known in some circles as "Babbage's Law") is: "Any
large programming project will always take twice as long as you
estimate." Even though the simplest of the text-handling capabilities
he specified in 1960 were to become, in the hands of other
programmers, the software spearhead of office automation in the
1980s, Nelson went far beyond simple text manipulation in the
program he set out to write for his term project.

Like Doug Engelbart, whose work he had yet to learn about, Nelson
yearned for more than a lazy man's typewriter. They both
wanted the freedom to steer their thought paths in new ways.
And Ted especially desired the prerogative of changing his mind. He
wanted the freedom to insert and delete words and move paragraphs
around, but he also wanted the computer to remember his decision
path. One of the specs was for something he called "historical
backtrack," in which the computer could quickly show him the various
earlier alternative versions of his ever-changing text.

"Alternative versions"? From a place to store notes to a tool for
sculpting text, his term project had now landed him in even
more wondrous science-fiction territory, a place where it was
possible to think in terms of parallel alternatives. Of entire
libraries of parallel alternatives, and automated librarians to perform
the most tedious of searches in microseconds. Why should we abandon
any thought at all? Why not just store every variation on
everything and let the computer take care of sifting through it
when we want to view something?

Ted Nelson was hooked, and desperately wanted to become a
"computer person," but came up against the still-prevalent notion that
computers are "mathematical." Never one to be accused of excessive
modesty regarding his intellectual powers, Nelson admits that he was
"a mathematical incompetent." He was even an outsider to those
outsiders who were dropping out of MIT and hanging around Building
26. A Swarthmore/Harvard person just wasn't versed in the way
Bronx-Science/MIT people talked about computers.

He couldn't find any jobs as a computer dreamer, but he did manage
to find a position as a photographer and film editor at a laboratory in
Miami where a man named John Lilly was conducting research on
dolphin intelligence. Lilly had a very rare piece of instrumentation --
one of the original LINC microcomputers designed by Wes Clark.
(Nelson didn't use the machine in his work, but its existence convinced
him that the idea of small, personal computers was indeed sensible.)
After that came a job teaching sociology at Vassar.

Over the next two years, while he taught sociology and thought about
the complexities of storing and cross-referencing that had prevented
him from finishing his note-keeping program, Nelson realized that he
was trying to create a new kind of thing. It was a tool, but it
was also a library, and a medium, and a legion of slave-
librarians. In the mid-1960s, when he was working at a book firm, he
started to call the whole scheme Xanadu. He says it is "a
traditional name for a magic place of literary memory," but it is worth
noting that Coleridge's poem of that name, like Nelson's term project,
was unfinished.

By the late sixties, having offended anyone who could help him in the
worlds of academic, commercial, and military computing, Ted was free
to find a few like-minded and computer-obsessed friends and attempt
to write the software that would make Xanadu possible. By this time,
he had not only dreamed up the specifications for the full-blown
version of this new information processing system, he had managed to
attract a few equally fanatic allies.

The basic note-keeping scheme that started it all was meant to have a
system for taking care of all backtracking. The next step was to
expand this capability to handle alternative versions and to show the
user which parts of different versions are the same and which are
different. This versioning capability, which Nelson now estimates to
consume about 5 percent of the Gross National Product -- from the
boiler-plate paragraphs used by attorneys to the 47 different versions
of the 747 design that are stored in Boeing's computers. In real life,
there is hardly ever such a thing as "the contract" or "the 747
blueprint." Mixtures of standard and custom features that make for
slightly different versions of contracts or blueprints are more often the
case.

Historical tracing and versioning, however, don't make for much
more than a powerful word processing system. Things started
getting extradimensional when Nelson thought about adding

links. Engelbart thinks that he and Nelson just happened to come up
with something similar around the same time, although Engelbart had
the technology and the wherewithal to actually get such a system up
and running. The whole idea started out as a kind of computer-
dynamized footnote -- a way to jump from part of the text to
something outside the main body of the current document.

Instead of encountering an asterisk and looking at the bottom of the
page for a footnote, and possibly looking up another document
elsewhere in the library to verify a reference, the user would point a
lightpen or a mouse as the electronic equivalent of the asterisk, and
automatically bring the appended or referenced material to the screen.
A return button would bring the user back to the point in the original
text where the link symbol appeared. A very similar feature was built
into Doug Engelbart's early NLS system.

Engelbart was more concerned with constructing the toolkit and
workshop for solving problems than speculating about the kind of
literary form such a facility might create. Nelson, however, being a
liberal arts type rather than an engineering type -- a dichotomy he
deplores, since it kept him away from computers for so long --
wondered what art forms and intellectual systems might emerge. In its
simplest essence, a link is a reminder that "there is something to jump
to here." Links meant that literature no longer had to be sequential.

The link facility, Nelson insisted from the first, provides something far
more powerful than a means of attaching odds and ends. A system
with backtrack, versioning, and links would create the possibility
of a new way of organizing thoughts into words, a nonsequential
form of writing that was never possible before computers, a
literary form he called hypertext.

Hypertext, as he first imagined it, could apply to scholarship as
well as to poetry. Scientific literature, the very basis of worldwide
scientific scholarship, consists of published documents which refer to
many previously published documents. An experiment is usually
performed to test a hypothesis that was based on previous
experiments. Performing a "search of the literature" is the first thing a
scientist does when confronted with a new research problem.

The problem today is that scientific research is too successful. As
Vannevar Bush warned forty years ago, the rate and volume of
scientific publication have overwhelmed the coping capacity of our
print-era technology. With a hypertext system, each scientific
document could have links to its intellectual antecedents and to
documents regarding related problems. The entire body of relevant
scientific literature could be collapsed into each individual document.
The links would function in the same way as footnotes, but with
immediate access to the cited material, as if each footnote was like a
window or door into the cited document.

A system with links, backtrack, and versioning needs only an

economic structure to become a publishing system. Nelson sees
an anarchic but self-organizing system based on his conception of
royalties and subroyalties. In a Xanadu-like system, royalties are
automatically monitored by the host computer network, and are
based largely on transmission time -- the amount of time
people pay on-line attention to a given document. Every
document in the system has an owner, and every owner is paid "a whiff
of royalty" whenever somebody calls their document from the memory
and displays it in words, sounds, or images.

Everybody can create what text they want and put it on the system,
from sonnets to pamphlets to textbooks, and everybody can quote or
cite any other document. Documents can consist of links. Compendia,
guided tours, directories, and indexes will spring up as independent
documents; order would become a valuable commodity. "The result is a
seemingly anarchic pool of documents, true, but that's what literature
has been anyhow . . . ," Nelson claims. "Its orderliness is not, as some
would suppose, imposed by the computer or its administrators, but by
something which arose long ago in the natural structure of literature,
and which we are merely retaining." Just as literary critics and
librarians have found ways to organize and categorize the
apparently chaotic stream of traditional literature, Nelson claims
that people will spontaneously invent methods of organizing a
hypertext-based body of literature.

Nelson sees his ultimate concerns about the technology as political.
Where most revolutionaries have regarded the computer as a tool of
totalitarian oppression, a symbol of centralized power and
dehumanization, Nelson has long known that these ideas are based on
an outmoded kind of computer. Distributed networks of individually
powerful computers are an entirely different thing from a central
computer with a lot of extensions, and Nelson was one of the first
to point out this technology's potential for creating social forms
directed by the individual members, who are beyond the command
of any old-fashioned, mainframe-type central control. He is enthused
by the personal power that comes with having ready access to usable
forms of information -- the bite of the old hacker apple -- and zealous
about preserving the freedom to explore it in your own way:

Those of us who grew up believing passionately in ideals that made our
country great, such as liberty and pluralism and the accessibility of ideas,

can hardly ignore the hope of such an opening-out. Libertarian ideas
of accessibility and excitement might unseat the video
narcosis that now sits on our land like a fog. I want to
see the writings of Herodotus, Nostradamus, and
Matthew Brann as accessible as those of Rod McKuen,
along with the art of the renaissance and movies of
tomorrow -- an all-encompassing picture-book
encyclopedia tumult graffiti-land, the Whole Works.

If this all seems like a wild idea, that means you understand it. These are

times wild with possibility. In an age of pocket calculators, the Pill,
hydrogen bombs by rocket, and soap operas by satellite, we can try to
create whatever wildness we want in our society.

. . . I say these worlds are possible soon. We need them, and they will
make lots of money. The software is on the way. But what is really lacking
are the visionary artists, writers, publishers, and investors who can see the
possibilities and help carry such ideas into reality.

What Nelson is raving about is not a technology, but a
community. The idea of electronic communities is no longer just
an idea. Lap-sized computers with crude display screens are already
on their way to being commonplace. The visual displays will grow far
more sophisticated, and the computers' processing power will increase
as prices drop. Dynabooks and ARPAnets are suddenly not limited to
research laboratories or military bureaucracies. On-line interactive
communities are evolving right now, all around the world, through the
wholly voluntary efforts of teenagers with modems, traveling business
people with briefcase telecomputers, information utilities, computer
bulletin board systems, and telecommunes of every stripe.

Ted Nelson is voicing what a few people have known for a while, from
the technical side -- that the intersection of communication and
computer technologies will create a new communication medium
with great possibilities. But he notes that the art of showing us
those possibilities might belong to a different breed of thinker, people
with different kinds of motivations and skills than the people who
invented the technology. After Gutenberg came Cervantes. After
movable type came novels. As Alan Kay pointed out, literature was the
software of the era. The Cervantes of Hypertext might be learning to
read right about now.

Twenty years ago, the few hundred people who built time-sharing
began to get excited about several new means of communication that
were becoming possible via computer mediation. Fifteen years ago, the
thousand-odd people who joined the first version of ARPAnet began to
experiment with the new media -- in their daily work as a way to have
fun. About a decade ago, another group of people began to
concentrate on software systems specifically designed to facilitate
communications among a dispersed community -- computer
teleconferencing.

The concept of computerized conferencing came from the usual
convergence of unexpected factors -- in this case the Berlin airlift of
1948, a decision tool invented by a think tank, and the wage-price
freeze of 1971. The idea was to build a system in which
computers make it possible for groups that are separated by
both space and time to communicate in various ways, over
common-carrier communication lines. Community communication
was first tired during the Berlin airlift, when the only agency with direct
real-time communications of its own to all the NATO countries was the
State Department, with its old-style teletype machines. Somebody
tried to wire all these machines together, without the aid of
computers to help organize the message-stream -- which

http://www.rheingold.com/vc/book
http://www.rheingold.com/vc/book
http://www.rheingold.com/vc/book/666.html
http://www.rheingold.com/vc/book/666.html
http://www.rheingold.com/vc/book
http://www.rheingold.com/vc/book

created a classic mess, and the classic story of the birth of the new
medium.

The earliest development of the idea of using computer
mediation in geographically dispersed conferences is most
widely associated with Murray Turoff, the standard eccentric
prodigy, the character who happens to see everything differently and
who, like other young, independent-minded thinkers before him, liked
to follow an idea wherever it led him.

In the late 1960s, Turoff was working on war games and other kinds of
computer-based simulations for a Washington, D.C., think tank, the
Institute for Defense Analysis. Some of these games involved
connecting several "players" at once, via remote computing
systems. As a result of this experience, Turoff became interested in
using computers to mediate a special process developed at Rand,
known as the "Delphi Method," in which printed questionnaires and
responses circulate among a community of experts. Delphi was a way
to reach a quick collective judgment about a complex situation; Turoff
thought the process was ideally suited to the kind of on-line
communications then being demonstrated on the ARPAnet. So he
started to experiment with a computerized Delphi system.

In the early 1970s, Turoff had moved to the Office of Emergency
Preparedness, where his job wasn't related to his immediate interests
in teleconferencing. His superiors found out that he was using his
computer terminal to experiment with an unauthorized
conference system, and there was some on-the-job friction. But
then came the wage-price freeze of 1971, an action that
required the rapid collection and collation of an unprecedented
amount of information. Turoff's superiors changed their minds. The
Delphi Conference System was ready just in time.

In the process of putting it together, the people who designed the
system and the people who used it began to discover that some of the
system's features just seemed to become popular with the on-line
community, with no official urging and often with no connection to the
task at hand. There was, for example, a feature simply called
"messages." Anyone plugged into the system could leave a
message for anyone else on a kind of computerized blackboard.
Like a blackboard, you could check your message later and see if
anyone appended a note. Notes proliferated so fast that people began
to develop programs for sifting through them.

The fancy part of the software came in when you wanted to be able to
review only the last five messages, or only those relating to a
particular topic, or all the messages from a particular person, or on a
given date. Similar efforts to build electronic mail systems were also
going on in conjunction with the ARPAnet. One unique feature of both
systems that emerged early was the capability of communicating with a
specialized audience, even if you didn't know who was in that
audience. For example, if you indicate to the host computer that

http://eies.njit.edu/%7Eturoff/
http://eies.njit.edu/%7Eturoff/Papers/delphi3.html

you want all future messages on the topic of AI research, folk
dancing, and Spacewar to be routed to your electronic mailbox,
then anyone with news about one of those topics can reach you
without knowing who you are.

They were also discovering something that had been unknown in
previous communication media -- the content of the message is
capable of also being an address. Far from being a tool of
dehumanization, the computer conferencing system could boost
everybody's ability to contact a community of common interest.
Some kinds of teleconferencing software were created in order to make
it possible to post a message on the topic of zucchini or
microprocessors (or emergency preparedness procedures, or organizing
an airlift) and be sure that the messages would be transmitted to
everyone who needed to know about those topics.

The use of a computer-mediated message system, as Turoff
understood, ultimately created several new social phenomena. It
was obvious from the vigorous electronic mail traffic on the ARPAnet
that some new kind of conversation was going on. At a technical level,
the users of these systems were able to share computer resources and
research findings, as they were supposed to. But it also turned out
that whenever people are introduced to a computer network,
they seem to want to use it to communicate with each other.

People on the ARPAnet devoted hours to composing messages. For the
small community of people who had access to such systems, the
continuing dialogues on AI and foreign policy, space shuttles and
space-war, diatribes, puns, puzzles, pranks, and running jokes
became a kind of combination electronic water-cooler and
customized daily news medium. All the other news media were
collapsed into subsets of the new one, since it was no problem to plug
the wire services into the system. The metamedium seemed to foster
new kinds of values, as well. Iconoclasm, debate, the right to an
unbridled heterogeneity of interests seemed to be highly valued
in the emerging on-line community.

In some quarters of that community, people like Turoff and Engelbart
were trying to learn enough from network communication behavior to
help them design new tools for group communications. The National
Science Foundation, deeply concerned with the problem of establishing
a new way for the half-million scientists in this country to communicate
with each other, sponsored some of the conferencing research. Under
NSF sponsorship, Turoff moved to the New Jersey Institute of
Technology (NJIT), to both study and improve the technology. A similar
project had already begun in California, at a place called Menlo Park,
not far from SRI and PARC, called the Institute for the Future.

Roy Amara and Jacques Vallee and other staff members at the Institute
for the Future worked on a system known as PLANET (for Planning
Network, because it was initially directed at planners in government

http://www.iftf.org/

and industry). Both Turoff's and the institute's systems began with
electronic mail, a shared notebook space for joint compositions, a
conference facility for in-line and off-line group communications, and
an open-message/bulletin board.

Turoff and his associates' EMISARI system that had evolved from the
Delphi Conference System evolved again into the RIMS (Resource
Interruption Monitoring System) which had been used, according to
Turoff, by the "Federal Preparedness Agency in every major national
commodity shortage and transportation strike since 1971."

By the time he joined NJIT, Turoff's interest had expanded beyond
the development of a communications tool for crisis
management: "I think the ultimate possibility of computerized
conferencing is to provide a way for human groups to exercise a
'collective intelligence' capability," he noted in 1976. "The computer
as a device to allow a human group to exhibit collective intelligence is
a rather new concept. In principle, a group, if successful, would exhibit
an intelligence higher than any member. Over the next decades,
attempts to design computerized conferencing structures that allow a
group to treat a particular complex problem with a single collective
brain may well promise more benefit for mankind than all the artificial
intelligence work to date."

In 1977, the National Science Foundation funded the NJIT to build "an
electronic communication laboratory for use by geographically
dispersed research communities." By July, 1978, seven trial projects
were under way, each one a part of an established research community
of ten to fifty members. The system was set up to collect data on its
own operations, in order to test the hypothesis that a teleconference-
like system could enhance the effectiveness of research communities.

The Electronic Information Exchange System, known as EIES
(pronounced "eyes"), was one of those experiments that never shut
itself down because the experimental subjects just wouldn't let go of it.
It seemed to happen with every new development of interactive
computing -- people would simply refuse to stop experimenting with
the system, and wouldn't give up the experimental tools when the
experiment was over. As Jim Fadiman noted of ARC, people seem to
be as reluctant to be deaugmented as they are resistant to
augmentation in the first place.

EIES was first set up to enable members to send private
communications to individuals or groups, maintain permanent
transcripts of comments on discussion topics, and provide text
processing and file management services that participants could use to
construct jointly authored papers. The protocols for using all the
communication features, like Engelbart's NLS system, were not easy to
learn. It took some commitment to the idea that it was worthwhile
learning, which is one reason why research communities were ideal
laboratories for the experiment.

EIES quickly expanded from pure scientific research communities to
legislative researchers and medical researchers. Another project in the

http://www.njit.edu/CCCC/eies/eiesinfo.html

late seventies used a modification of Engelbart's NLS system to enable
EIES subscribers in one experimental group to quickly browse through
time-sensitive technical information. By 1978, policy-makers, artists,
long-range planners, and others began to join EIES. Roxanne Hiltz and
Turoff published a book that year, entitled Network Nation, in which
they predicted that the medium wouldn't be limited to a few
laboratories and think tanks. They noted that any microcomputer with
a modem and appropriate software could plug into any network its user
knew how to enter. They saw the development of easier-to-use,
population-wide teleconferencing networks as a means of
reducing the distance between people's minds and thoughts, as
a forum for intellectual discourse and group decision-making, as
a model for a new kind of community where one's age, gender,
race, or physical appearance would no longer matter as much as
what one has to say.

By the early 1980s, personal computers were being sold by the
millions, and some of the people who bought them wanted to plug into
these networks they were beginning to hear about. EIES has always
been something of an elite -- you have to apply and pay a relatively
high fee. But the first public information utility wasn't long in
coming. In June, 1979, the Telecomputing Corporation of America
opened for business out of a host computer in McLean, Virginia.
Reader's Digest bought the company in 1980, and it was renamed
Source Telecomputing Corporation. Reader's Digest, not an
organization known for small-scale pursuits, carried the organization
through the early years when computer sales crept into the hundreds
of thousands. By the end of 1982, The Source had over 25,000
subscribers, and a growth rate of over 1000 new subscribers per
month. Satellites and state-of-the-art computers and new software
were added to accommodate up to a quarter-million subscribers.

To those who can afford an initiation fee of $100, and a connect-time
fee of $7 to $22 per hour, The Source and its newer competitor,
Compuserve, offer computer owners admission to an electronic
community-in-the-making. Besides remote computing, electronic mail,
communications, telemarketing, software exchange, game playing,
news gathering, bulletin board, and other services, The Source provides
something called "user publishing."

Since subscribers are billed according to how much time they spend
with their computer connected to the Source host computer, it is
possible to pay royalties to "information providers," based on a portion
of that connect time. Every time a Source subscriber reads wire service
information, the information provider gets a cut of the take. The same
is true of user publishers. You have to pay for everything you put in
storage, so the popularity of your service with the subscribers is what
determines whether any publication is economically viable. To a
creative writer, the challenge is tempting -- as long as you can
keep your audience reading, the royalties will outweigh the
storage charges. The artist can now be the publisher and go
directly to the audience.

http://www.rheingold.com/vc/book/7.html

Two electronic magazines I encountered my first time out were called
Sourcetrek and Mylar's Warp. Sourcetrek, subtitled "Journeys through
the Electronic Void," is put out by "Sourcetronaut Dave," aka
"Sourcevoid Dave." When you give The Source the command to
connect you to Sourcetrek, you get a choice of menus on your screen,
along with a list of different statistics about the choices -- reading time,
number of times read, the exact time it was last read. I selected the
first "article," entitled "Hello," which went (in part) as follows:

Hello.

I am "Sourcevoid" Dave. David Hughes otherwise.

I was born in Colorado, descended from stubborn Welshmen who were
never too loyal to the king. Which is probably why I am content being a
maverick of sorts, with a Welsh imagination.

I live in Historic Old Colorado City at the base of 14,114 foot Pike's Peak.

I work out of my 1984 Electronic Cottage with a variety of microcomputer
and telecommunications tools. . . .

I am a happily married middle-aged family man who has seen enough of
Big Government, Big Industry, Big political Causes -- either of the left or
the right -- to now prefer to operate a small business out of a small house,
in a small neighborhood, working with small organizations, using a small
computer to make it all possible.

I also have a small computer bulletin-board to link my local friends with
my brain -- asychronously and in the noble written form of English. . . .

Dave has opinions and poems and stories to tell. He teaches classes via
modem to students around the world. And all subscribers can read
what he has to say, at their own expense, and reply by electronic mail
if they wish, also at their own expense. The other electronic magazine I
sampled, Mylar's Warp, an Electronic Serial, by Floyd Flanagan, was
strictly fictional. The idea is the same idea behind any serial -- the
writer has to keep it interesting in order to keep the readers' attention.

The title of Chapter 1 was "Reflections on Ice," and this is as much as I
read before I realized how much I was spending in connect time:

I know I'm freezing to death. Wasn't supposed to feel a thing. Ha! A sucker
born every minute. Just because you're frozen alive, that doesn't mean you
can't still be freezing to death. I may be slowed down, but I ain't dumb.
Sure as hell, I'm freezing to death.

So, how did I get here? No reason not to go over it again for the eleven
millionth time. Nothing else to do. I'm Johnny Mylar, from Peabody, Utah.
Peabody's claim to fame was Dinah, a life-sized pea-green cement replica
of a dinosaur, like me, frozen out of time. . . .

Anyway, it all started when I was getting my drivers license renewed and
the lady asked me if I would like an organ donor sticker on the back of my
license. Hadn't ever really thought about it before, I told her. So, she
explained how, if I died and there was a sticker on my license, the
hospitals would be able to use my organs to help people who had lost an
eye, or heart, or brain, or tooth, or whatever. "Sure," I said. "Whatever's
right." I had always had a cavalier attitude concerning the most basic
matters, like sex and death. Didn't I always buy Girl Scout cookies from
the little girls in the short green skirts, and . . . "

http://www.rheingold.com/vc/book/9.html
http://members.aol.com/ffloyd/resume.html

While the community of subscribers to EIES, The Source, Compuserve,
Dow Jones, and other information utilities is still small enough to keep
the costs of services high, the inevitable growth of telecomputing
population from tens of thousands to millions, spurred by the
proliferation of modem-equipped home computers is sure to lower the
price enough to make it possible for more Floyd Flanagans and David
Hughses to experiment with their electronic magazines. But the big
info-utilities are not the only kind of on-line community in existence. At
the same time that the larger utilities seek to plug individual
subscribers together into what is essentially a centrally controlled time-
sharing technology, a different way of interconnecting computers
is giving birth to an even wilder mutant of network culture --
the computer-based bulletin boards.

A computer bulletin board system, often called a CBBS, or simply a
BBS, consists of a computer controlled by special software and the
hardware needed to connect it to an ordinary telephone line. The
software enables a small host computer to automatically answer when
its telephone number is dialed, and transmit and receive messages to
and from remote computers. By leaving such a system hooked up
continuously, and posting the access number in one or two places, the
grapevine takes care of the rest. Come back and read all the messages
a week later and you'll discover that a community has created itself.

The first software that enabled microcomputer owners to set up CBBS
was created by Ward Christensen and Randy Seuss, in Chicago, in
1978. By 1984, the number of such systems is difficult to determine,
but it must at least be in the hundreds, and probably will soon be in
the thousands. To connect to a BBS, you need a personal computer, a
modem, telecommunication software, and a telephone. Plug the
telephone into the modem, use the communication program to dial the
BBS number, then when the computers are connected, the host system
will put words on your screen and tell you how to work the system.

Most people know of these systems, and the underground community
of users, because of the movie WarGames, television programs about
computer whiz kids, and publicity about dark-side hackers. In fact the
community has changed so swiftly that piracy, phone-freaking,
destructive hacking, and even obsessive interest in how computers
work now occupy only a small part of the BBS scene. Many bulletin
boards have been in existence for years, but even more seem to spring
up and die out on a weekly basis. In my own limited sampling of
the BBS world, over the span of a few months, I encountered
teenage philosophers, homespun lecturers of all ages and both
sexes willing to ramble about any topic you'd care to name, and
I even stumbled onto a couple of on-line religions, both
cybernetic and pagan.

I met Clyde Ghost Monster one night out in the bulletin board zone,
and Clyde ultimately turned me on to the number that led me to the
on-line religion. It started the way it usually does when you browse the
boards. A list of bulletin board numbers had led me to a list of bulletin
board numbers that led me to another lively discussion group called

http://www.rheingold.com/vc/book/4.html
http://www.students.uiuc.edu/%7Elneumann/wargames/

"Sunrise" in New Jersey, consisting of random drop-ins from anywhere
in the country, like me, and a core group, mostly local, who seemed to
know each other, and who spent hours trading messages about utterly
anything at all.

While some boards are strictly for hackers or computer
enthusiasts or science-fiction freaks or sex freaks or peace
types, Sunrise appeared to be a kind of electronic cracker-barrel
store crossed with a public restroom wall. I joined Sunrise as
"Johnny Jupiter" when I decided to add my two cents to a very funny
ongoing conference that consisted of nothing but lists of "my favorite
people." You can say a lot with just a list of people, the Sunrise
community discovered one night, when "Ivan Idea" started it all by
posting the first list. The creators of the lists that followed within hours
signed themselves with names like "Tater Tot," "Clock Speed," and
"Clyde Ghost Monster."

I checked in on Sunrise from week to week, and one night, while
scrawling some graffitist reply to an ongoing epistemological debate,
the words "SYSOP REQUESTS CHAT" appeared on my screen. I typed
"OKAY LET'S CHAT," hit the return key, and started conversing in real
time with an utterly fascinating individual, via an exchange of quickly
typed messages.

It turned out that the host computer was located in Clyde Ghost
Monster's bedroom, which made Clyde the system operator. Sysops are
like benevolent dictators. They can weed you out of the community
memory if they want, but then again, their computer is the one that
provides a message-mediation system to anyone who wants to drop in,
electronically speaking. Clyde Ghost Monster was an anarchist sysop,
who preferred the rule of wit. Clyde Ghost Monster, I was to learn
weeks later, was also a sixteen-year-old girl. Tater Tot was a
seventeen-year-old boy who went to her high school. They had no idea
who Ivan Idea was.

Clyde told me that if I wanted to find out about new kinds of
communities, I ought to call a conference-tree bulletin board in Santa
Cruz, California, and read the opening message for "ORIGINS." The
conference tree is a bulletin-board-based medium that seems
particularly well suited to wildly heterogeneous experiments in
communitarian communication. The idea behind a conference tree is
that you can call in and read from or write to a variety of conferences,
each one consisting of a constantly branching list of messages and
submessages. The name of the message conveys something of what it
is all about, and all the variations of opinion from rabid enthusiasm to
utter contempt can be expressed in submessages and submessages of
submessages.

My modem beeped its way to the host computer, and when the word
CONNECT appeared on my screen, I hit the return key twice. A menu
of conferences appeared, in the form of the list of names of the first
message in each conference. I selected "ORIGINS," as instructed.
ORIGINS first gave me an address to write to obtain a brochure, then
the following message appeared on my screen:

ORIGINS is a movement that started on this computer (Santa Cruz, 408-
475-7101). Origins began on the START-A-RELIGION conference, but we
don't call it a religion.

ORIGINS is partly a religion, partly like a westernized form of yoga society,
partly a peace movement. It is a framework for improving your life and
improving the world at the same time.

The movement centers on "practices" -- actions you can use in everyday
life to build effective human relationships, strength of community, and self-
awareness. All the practices are based on action. None require any special
equipment, settings, leaders, theories or social status. The human
universals of the ordinary, everyday moment, and the personal
relationship, form the basis for this training.

ORIGINS has no leaders, no official existence, nothing for sale. Because it
started in an open computer conference, no one knows who all the creators
are.

This movement has just begun. The brochure mentioned above
recommends seven practices (Leverage a favor, Ask for help and get it,
Use charisma, Finish a job, Use magic, Observe yourself, Share Grace), but
these suggestions are only starters. The idea is to continually develop new
training/action methods, as a community project, then discuss and share
them through whatever communications media are available. This
movement will never be finished, because it seeks a community of
permanent innovation.

The hope is to build something which can make a better world. The first
step is to make your own life better. For a more detailed overview of
ORIGINS, get the brochure from the address above. To see how the
movement developed, read the START-A-RELIGION message and its
submessages.

Although the conference tree that contained ORIGINS, along with its
parent and sister and daughter conferences (as submessages and root
messages are known in BBS jargon), was one of the most intriguing
electronic gathering places I found in a few months of vicarious
wanderings via my modem, it was far from the only unusual one.

The pros and cons of religion, and the possibility of starting new ones
or reviving old ones, seems to be a popular topic of discussion.
ORIGINS was an example of the cybernetic variety. I ran across a few
Christian boards and a meditators' BBS, but the most startling
discovery was the Pagan faction who announced themselves with a
message on a conference tree:

The covenant of the Goddess is an umbrella organization for pagan groups
of all kinds. It was created in the 60s to provide some structure (and
maybe some muscle, since some groups were being harassed by the
government) to an otherwise amorphous group of covens in Northern
California, but eventually had members everywhere. A pagan group mostly
refers to witches, although there are Druid groves and other strictly
unallied organizations online as well. Witches means any affinity group
which holds as one of its general tenets that Jehovah may not be the guy
in charge after all -- that he is a powerful illusion created by an awful lot of
misguided and power-hungry folks, and that the supreme being is and
should be somebody with more of a sense of humor as well as compassion,
not even to mention love. In short, it might be fair to claim that it's better
than any other way, then it's probably pagan. These definitions are by
exclusion because one way of defining the whole pagan movement is as a
group that believes in saying yes to more. A coven is an affinity group of
witches. The name is very old. Some covens have fierce strict codes of

behavior and rules of ceremony and others get together now and then and
shoot the shit. By and large, witches have the best parties of any groups
going. There is another organization in the California area known as the
New Reformed Orthodox Order of the Golden Dawn, which was started as a
gag in the 60s and presently has several thousand members, a good many
of which can apparently be counted on to show up for a bash. It is typically
pagan, incidentally, to start your biggest umbrella organization for a joke.
Lots of witches compute, and there are probably a bunch on this very tree
who have not bothered to identify themselves. (Witches have no identifying
marks -- except for that humorous glint in the eye.)

Religion, ancient or modern, is still less popular than sex as a topic for
BBS discussion. A certain steady percentage of boards are
entirely sexually oriented. The problem used to be that there simple
weren't any females on the system, but that appears to be changing
rapidly. Sexually oriented CBBS and dial-a-date boards are an entrance
into yet another subculture, some members of which use the system to
arrange real-life assignations with compatible companions, but most of
whom use the system to live out fantasy sex lives consisting of hot
dialogues with other anonymous participants.

Because computer programs can be sent over the telephone wires as
easily as words or numbers, some boards engage in software piracy --
passing along proprietary software without paying the licensing fee.
Others dispense "public domain" software as a community service.
some of them offer access to special information, like an insider
newsletter, and issue passwords and bill for connect-time. Some are
exclusive, and many are promiscuous, about who is allowed to write as
well as read messages.

Then there are folks who are starting to use temporary on-line
communities as art forms and as experiments in changing the
consciousness of larger communities like neighborhoods and cities. In
1983, a literary group in Seattle that called itself Invisible Seattle
instigated the creation of a fifteen chapter mystery story written by a
representative sampling of the half-million citizens of the city itself. The
collective novel was not a new form, as far as the more standard kinds
of networks go. EIES started a serial years before, in which different
writers took on the personae of various characters and wrote the story
like a conference.

Invisible Seattle, however, sent "literary construction workers" out into
the city looking for people from all works of life who were willing to
contribute plots, words, ideas, which were communicated from the
point of origin to the other nodes throughout the city via a temporary
arrangement of video arcade game parts, two larger personal
computers, some custom written software, and six smaller personal
computers.

What do Xanadu, EIES, The Source, Clyde Ghost Monster, and Invisible
Seattle have to do with the technology created by Turing, von
Neumann, Licklider, et al.? What would the patriarchs think of the
infonauts? The changes that were predicted by the earliest software
prophets seems to be only the beginning. The religion that germinated
on the ORIGINS conference tree -- was its origin any stranger or less
likely than the dominant religions of today that sprang up centuries ago

in dusty Middle Eastern villages? Xanadu and EIES might seem like
novel and unfamiliar media -- but so did the printing press and
telephones when they first appeared.

The forms that cultural innovations took in the past can help us try to
forecast the future -- but the forms of the past can only give us a
glimpse, not a detailed picture, of what will be. The developments that
seem the most important to contemporaries, like blimps and
telegraphs, become humorous anachronisms to their grandchildren. As
soon as something looks like a good model for predicting the way life is
going to be from now on, the unexpected happens. The lesson, if
anything, is that we should get used to expecting the
unexpected.

We seem to be experiencing one of those rare pivotal times between
epochs, before a new social order emerges, when a great many
experiments briefly flourish. If the experiences of past generations
are to furnish any guidance, the best attitude to adopt might
have less to do with picking the most likely successors to
today's institutions than with encouraging an atmosphere of
experimentation. Is Ted Nelson any crazier than Alan Turing? Did
Gutenberg think about the effects of public libraries?

Hints to the shape of the emerging order can be gleaned from the uses
people are beginning to think up for computers and networks. But it is
a bit like watching the old films of flying machines of the early
twentieth century, the kind that get a lot of laughs whenever they are
shown to modern audiences because some of the spiral-winged or
twelve-winged jobs look so ridiculous from the perspective of the jet
age. Yet everyone can see how very close the spiral-winged
contraption had come close to the principle of the helicopter.

The dispersal of powerful computer technology to large
segments of the world's population, and the phasing-in of the
comprehensive information-processing global nervous system
that seems to be abuilding, are already propelling us toward a
social transformation that we know very little about, except that
it will be far different from previous transformations because the
tool that will trigger the change is so different from previous
tools. Not all of those who have tried to predict the course of this
transformation have been so optimistic as Licklider or Nelson. Joseph
Weizenbaum, in particular, has voiced his fear of the danger of
mistaking computers for human minds or treating human beings as
machines.

Weizenbaum's argument, in part, points out that the aspect of human
nature that was externalized by the invention and evolution of
computers was precisely the most machine-like aspect. The machines
that embody this aspect can do some very impressive things that
humans cannot do, and at present can do very little of the more
sophisticated intellectual feats humans can accomplish. Even so, they

are taking over the management of our civilization. Before we begin
to give more decision-making responsibility over to the
machines, Weizenbaum warns that it is a terrible mistake to
believe that all human problems and all important aspects of
human life are computable.

This "tyranny of instrumental reasoning" can lead to atrocities,
Weizenbaum warns, and in the closing years of the twentieth century,
it is not at all paranoid to have some healthy suspicions about
what any shiny new technology that came from the Defense
Department in the first place might do to our lives when they
get around to mass producing it. And there is no dispute that
war was the original motivation and has been the continuing
source of support for the development of computer technology.

If it is true that the human brain probably started out as a rock-
throwing variation on the standard hominid model, it has also
proved capable of creating the Sermon on the Mount, the Mona
Lisa, and The Art of the Fugue. If it is true that the personal
computer started out as an aid to ballistic calculations, it is also
true that a population equipped with low-cost, high-power
computers and access to self-organizing distributed networks
has in its hands a potentially powerful defense against any
centrally organized technological tyranny.

Licklider believed that a human-computer symbiosis would be the
means of steering our planet through the dangerous decades ahead.
Others have used another biological metaphor for our future
relationship with information processing technology -- the concept of
coevolution, an agreement between two different organisms to
change together, to interact in such a way that improvements in the
chances for survival for one species can lead to improvements in the
chances for survival of the other species.

Perhaps yet another biological metaphor can help us foresee the
transformation ahead. When a caterpillar transforms into a butterfly, it
undergoes a biologically unique process. Ancient observers noticed the
similarity between the changes undergone by a butterfly pupa and
those of the human mind when it undergoes the kind of transformation
associated with a radical new way of understanding the world -- in fact
the Greek word for both butterfly and soul is psyche.

After the caterpillar has wound itself with silk, extraordinary changes
begin to happen within its body. Certain cells, known to biologists as
imaginal cells, begin to behave very differently from their normal
caterpillar cells. Soon, these unusual cells begin to affect cells in their
immediate vicinity. The imaginal cells begin to grow into colonies
throughout the body of the transforming pupa. Then, as the caterpillar
cells begin to disintegrate, the new colonies link to form the structure
of the butterfly's body.

At some point, an integrated supercolony of transformed cells that had
once crawled along the ground emerges from the cocoon and flies off
into the spring sky on multicolored wings. If there is a positive
image of the future of human-computer relations, perhaps it is
to be seen reflected in the shapes of the imaginal cells of the
information culture -- from eight-year-olds with fantasy amplifiers to
knowledge engineers, from Ted Nelson to Murray Turoff, from Clyde
Ghost Monster to Sourcevoid Dave, from ARPA to ORIGINS.

The flights of the infonauts are not the end of the journey begun by the
patriarchs, but the beginning of the most dramatic software odyssey of
them all. It is up to us to decide whether or not computers will
be our masters, our servants, or our partners.

It is up to us to decide what human means, and exactly how it
is different from machine, and what tasks ought and ought not
to be trusted to either species of symbol-processing system. But
some decisions must be made soon, while the technology is still
young. And the deciding must be shared by as many citizens as
possible, not just the experts. In that sense, the most important
factor in whether we will all see the dawn of a humane,
sustainable world in the twenty-first century will be how we deal
with these machines a few of us thought up and a lot of us will
be using.

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

howard rheingold's brainstorms
<="" font="">

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/

Tools for Thought by Howard Rheingold

Footnotes

Chapter Two: The First Programmer Was a Lady

[1] B. V. Bowden, ed., Faster than Thought, (New York: Pitman), 15.

[2] Ibid., 16.

[3] Herman Goldstine, The computer from Pascal to von Neumann
(Princeton: Princeton University Press, 1972), 100.

[4] Philip Morrison and Emily Morrison, eds., Charles Babbage and his
Calculating Engines (New York: Dover Publications, 1961), 33.

[5] Doris Langley Moore, Ada, Countess of Lovelace: Byron's Legitimate
Daughter (New York: Harper and Row, 1977), 44.

[6] Ibid., 155.

[7] Morrison and Morrison, Babbage, 251-252.

[8] Ibid., 284.

[9] Bowden, Faster Than Thought, 18.

[10] George Boole, An investigation of the Laws of Thought, on Which are
Founded the Mathematical Theories of Logic and Probabilities (London:
Macmillan, 1854; reprint, New York: Dover Publications, 1958), 1-3

[11]Leon E Truesdell, The Development of Punch Card Tabulation in the
Bureau of the Census, 1890-1940 (Washington: U.S. Government Printing
Office, 1965), 30-31.

[12] Ibid., 31.

Chapter Three: The First Hacker and his Imaginary Machine

[1] Alan M. Turing, "On Computable Numbers, with an Application to the
Entscheidungsproblem," Proceedings of the London Mathematical Society,
second series, vol. 42, part 3, November 12, 1936, 230-265.

[2] An amusing example of an easily constructed Turing machine, using
pebbles and toilet paper, is given in the third chapter of Joseph
Weizenbaum, Computer Power and Human Reason (San Francisco: W. H.
Freeman, 1976).

http://www.rheingold.com/howard

[3] Turing, "Computable Numbers."

[4] Andrew Hodges, Alan Turing: The Enigma (New York: Simon and
Schuster, 1983), 396.

[5]Ibid., 326.

[6] Alan M. Turing, "Computing Machinery and intelligence," Mind, vol. 59,
no. 236 (1950).

[7] Ibid.

[8] Hodges, Turing, 488.

Chapter Four: Johnny Builds Bombs and Johnny Builds Brains

[1] Steve J. Heims, John von Neumann and Norbert Wiener (Cambridge,
Mass.: MIT Press, 1980), 371.

[2] C. Blair, "Passing of a great Mind," Life,, February 25, 1957, 96.

[3] Stanislaw Ulam, "John von Neumann, 1903-1957," Bulletin of the
American Mathematical Society, vol. 64, (1958), 4.

[4] Goldstine, The Computer, 182.

[5] Daniel Bell, The coming of Post-Industrial Society (New York: Basic
Books. 1973), 31.

[6] Katherine Fishman, The Computer Establishment (New York: McGraw-
Hill Book Co., 1981), 22.

[7] Ibid., 24.

[8] Goldstine, The Computer, 153.

[9] Ibid., 149.

[10] Heims, von Neumann and Wiener, 186.

[11] Goldstine, The Computer, 196.

[12] Hodges, Turing, 288.

[13] Ibid., 288.

[14] Goldstine, The Computer, 196-197.

[15] Arthur W. Burks, Herman H. Goldstine, and John von Neumann,
"Preliminary discussion of the Logical Design of an Electronic Computing
Instrument," Datamation, September-October 1962.

[16] Goldstine, The Computer, 242.

[17] Manfred Eigen and Ruthlid Winkler, Laws of the Game (New York:
Knopf, 1981), 189, 192.

Chapter Five: Ex-Prodigies and Antiaircraft Guns

[1] H. Addington Bruce, New Ideas in Child Training," American Magazine,
July 1911, 291-292.

[2] I. Grattan-Guiness, "The Russell Archives: Some New Light on Russell's
Logicism," Annals of Science, vol. 31 (1974), 406.

[3] M. D. Fagen, ed., A history of Engineering and science in the Bell
System: National Service in War and Peace (1925-1975) (Murray Hill, N.J.:
Bell Telephone Laboratories, Inc., 1978), 135.

[4] Norbert Wiener, Cybernetics, or Control and Communication in the
Animal and the Machine (Cambridge, Mass.: MIT Press, 1948), 8.

[5] Adam Rosenblueth, Norbert Wiener, and John Bigelow, "Behavior,
Purpose, and Teleology," Philosophy of Science, vol. 10 (1943), 18-24.

[6] Warren McCulloch, Embodiments of Mind Cambridge, Mass.: MIT Press,
1965).

[7] Warren McCulloch and Walter Pitts, "A Logical Calculus of the Ideas
Immanent in Nervous Activity," Bulletin of Mathematical Biophysics, vol. 5
(1943), 115-133.

[8] Pamela McCorduck, Machines Who Think (San Francisco: W. H Freeman,
1979) 66.

[9] Heims, von Neumann and Wiener, 205.

[10] Norbert Wiener, I Am a Mathematician: The Later Life of a Prodigy
(Cambridge, Mass: MIT press, 1966), 325.

[11] Wiener, Cybernetics.

[12] Jeremy Campbell, Grammatical Man (New York: Simon and Schuster,
1982), 21.

[13] Heims, von Neumann and Wiener, 208.

[14] McCorduck, Machines Who Think, 42.

Chapter Six: Inside Information

[1] Claude E. Shannon, "A Symbolic Analysis of Relay and Switching
Circuits," Transactiona of the AIEE, vol. 57 (1938), 713.

[2] Claude E. Shannon, "A Mathematical Theory of Information," Bell
Systems Technical Journal, vol. 27 (1948), 379-423, 623-656.

[3] Claude E. Shannon, "The Bandwagon," IEEE Transactions on Information
Theory, vol. 2, no. 3 (1956), 3.

[4] Noam Chomsky, Reflections on Language (New York: Pantheon, 1975).

[5] Claude E. Shannon, "Computers and Automata," Proceedings of the IRE,
vol. 41, 1953, 1234-1241.

[6] Campbell, Grammatical Man, 20.

Chapter Seven: Machines to Think With

[1] J.C.R. Licklider, "Man-Computer Symbiosis," IRE Transactions on Human
Factors in Electronics, vol. HFE-1, March 1960, 4-11.

[2] Ibid., 6.

[3] Ibid.

[4] Ibid., 7.

[5] Ibid., 4.

Chapter Eight: Witness to History: The Mascot of Project Mac

[1] Hubert Dreyfus, what Computers Can't Do: a critique of Artificial Reason
(New York: Harper & Row, 1972).

[2] R. D. Greenblatt, D. E. Eastlake, and S. D. Crocker, "The Greenblatt
Chess Program," Conference Proceedings, American Federation of
Information Processing Societies, vol. 31 (1967), 801-810.

[3] Joseph Weizenbaum, Computer Power and Human Reason (San
Francisco" W. H. Freeman, 1976), 2-3.

[4] Ibid., 116.

[5] Ibid., 118-119.

[6] Philip Zimbardo, "Hacker Papers," Psychology Today, August 1980, 63.

[7] Ibid., 67-68

[8] Frank Rose, "Joy of Hacking," Science 82, November 1982, 66.

Chapter Nine: The Loneliness of a Long-Distance Thinker

[1] Vannevar Bush, As We May Think," the Atlantic Monthly, August 1945.

[2] Nilo Lindgren, "Toward the Decentralized Intellectual Workshop,"
Innovation, No. 24, September 1971.

[3] Douglas C. Engelbart, "A Conceptual Framework for the Augmentation of
a Man's Intellect," in Vistas in Information Handling, vol. 1, Paul William
Howerton and David C. Weeks, eds. (Washington: Spartan Books, 1963), 1-
29.

[4] Ibid., 4-5.

[5] Ibid., 5.

[6] Ibid., 6-7.

[7] Ibid., 14.

[8] Douglas C Engelbart, "NLS Teleconferencing Features: The Journal, and

Shared-Screen Telephoning," IEEE Digest of Papers, CompCon, Fall 1975,
175-176.

[9] Douglas C Engelbart, "Intellectual Implications of Multi-Access
Computing," Proceedings of the Interdisciplinary Conference on Multi-Access
Computer Networks, April 1970.

[10] Peter F. Drucker, The Effective Executive(New York: Harper & Row,
1967).

[11] Peter F Drucker, The Age of Discontinuity: Guidelines to Our Changing
Society (New York: Harper & Row, 1968).

[12] Douglas C. Engelbart, R. W. Watson, and James Norton, "The
Augmented Knowledge Workshop," AFIPS Conference Proceedings, vol. 42
(1973), 9-21.

Chapter Ten: The New Old Boys from the ARPAnet

[1] J. C. R. Licklider, Robert Taylor, and E. Herbert, "The Computer as a
Communication Device," International Science and Technology, April 1978.

[2] Ibid., 22.

[3] Ibid., 21.

[4] Ibid., 27.

[5] Ibid., 27.

[6] Ibid., 30.

[7] Ibid. 31.

[8] David Canfield Smith, Charles Irby, Ralph Kimball, and Eric Harslem, The
Star User Interface: An Overview," in Office Systems Technology (El
Segundo, Calif.: Xerox Corporation, 1982).

[9] Ibid., 25.

Chapter Eleven: The Birth of the Fantasy Amplifier

[1] Ted Nelson, The Home Computer Revolution (self-published, 1977),
120-123.

[2] Michael Schrage, "Alan Kay's Magical Mystery Tour," TWA Ambassador,
January 1984, 36.

[3] Seymour Papert, Mindstorms: Children, Computers, and Powerful Ideas
(New York: Basic Books, 1980), 183.

[4] Alan Kay, "Microlectronics and the Personal Computer," Scientific
American, September 1977, 236.

[5] Alan Kay and Adele Goldberg, "Personal Dynamic Media," Computer,
March 1977, 31.

[6] Alan Kay, "Microlectronics," 236.

[7] Ibid., 239

[8] Ibid., 244

[9] Ibid.

[10] Ibid.

[11] Ibid.

Chapter Thirteen: Knowledge Engineers and Epistemological
Entrepreneurs

[1] Avron Barr, "Artificial Intelligence: Cognition as Computation," in The
Study of Information: Interdisciplinary Messages. Fritz Machulp.

[2] Katherine Davis Fishman, The Computer Establishment <="" a="">

[3] Edward A. Fiegenbaum, Bruce G. Buchanan, and Joshua Lederberg, "On
Generality and Problem Solving: A case study using the DENDRAL Program,"
in Machine Intelligence 6, B. Metzler and D. Michie, eds. (New York:
Elsevier, 1971) 165-190.

[4] Fishman, Computer Establishment, 364.

[5] "A rebel in the Computer Revolution," Science Digest, August 1983, 96.

[6] Avron Barr and Edward Fiegenbaum, eds., Handbook of Artificial
Intelligence (Los Altos, Calif.: William Kaufmann, 1981).

[7] Avron Barr, J. S. Bennet, and C. W. Clancey, "Transfer of Expertise: A
Theme of AI Research," Working Paper No. HPP-79-11, Stanford University,
Heuristic Programming Project (1979), 1..

[8] Ibid., 5.

[9] Edward Feigenbaum and J. Feldman, eds., Computers and Thought (New
York: McGraw-Hill Book Co., 1963).

[10] Avron Barr, "Artificial Intelligence: Cognition as Computation," 18.

[11] Ibid.

[12] Ibid., p. 19.

[13] Ibid., p.22.

Chapter Fourteen: Xanadu, Network Culture, and Beyond

[1] Ted Nelson, Dream Machines/Computer Lib (self-published, 1974).

[2] Ted Nelson, Literary Machines (self-published, 1983).

[3] Ibid., 1/17.

[4] Ibid., 1/18.

[5] Ted Nelson, "A New Home For the Mind," Datamation, March 1982, 174.

[6] Ibid., 180.

[7] Roy Amara, John Smith, Murray Turoff, and Jaques Vallee
"Computerized Conferencing, a New Medium," Mosaic, January-February
1976.

[8] Ibid., p 21.

[9] Sarah N. Rhodes, The Role of the National Science Foundation in the
Development of the Electronic Journal(Washington: National Science
Foundation, Division of Information Science and Technology, 1976).

index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

howard rheingold's brainstorms

©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/texts/tft/index.html
http://www.rheingold.com/

